busPIRone (Monograph)
Brand names: BuSpar, BuSpar Dividose
Drug class: Non-benzodiazepine Anxiolytics
Introduction
Anxiolytic agent;2 4 70 89 112 131 132 133 structurally and pharmacologically different than benzodiazepines, barbiturates, and other available anxiolytic agents.1 2 4 6 70 78 112 132 133 187
Uses for busPIRone
Anxiety Disorders
Management of anxiety disorders (anxiety and phobic neuroses)1 2 5 36 37 38 39 40 41 42 45 72 81 83 88 95 107 109 123 189 191 and short-term relief of symptoms of anxiety.1 2 47 72 123
Efficacy generally comparable to that of benzodiazepines (e.g., alprazolam,45 83 clorazepate,40 42 83 184 diazepam, 36 37 38 39 40 41 72 81 83 88 107 109 130 160 lorazepam) in the management of generalized anxiety disorder (GAD).45 83
Preferred by some clinicians for the management of anxiety disorders in patients with a history of aggression or in whom disinhibition has occurred during benzodiazepine therapy.154 185 186
busPIRone Dosage and Administration
General
-
Slower onset of action than some anxiolytics (e.g., diazepam).36 38 39 80 82 87 112 122 184 Optimum therapeutic effect usually requires at least 3–4 weeks39 41 123 193 and occasionally up to 4–6 weeks of therapy.87
Administration
Oral Administration
Administer orally in a consistent manner, either always with or always without food.1 (See Food under Pharmacokinetics.)
The 15- and 30-mg tablets (Dividose tablets) are scored to be broken in 2 halves (each providing a dose of 7.5 and 15 mg, respectively) or in 3 thirds (each providing a dose of 5 and 10 mg, respectively).1
Dosage
Available as buspirone hydrochloride; dosage is expressed in terms of the salt.1
Adults
Anxiety Disorders
Oral
Initially, 10–15 mg daily in 2 or 3 divided doses.1 2 37 38 41 45 47 49 72 83 123 191 193 Increase dosage in increments of 5 mg daily every 2–4 days according to individual response and tolerance.1 2 5 37 38 41 72 83 123 Maintenance, 15–30 mg daily in 2 or 3 divided doses.1 37 38 39 40 41 42 45 47 48 51 59 114 123 191
Reduced dosage recommended in patients receiving concomitant therapy with potent CYP3A4 inhibitor.1 (See Drugs Affecting Hepatic Microsomal Enzymes under Interactions.)
Prescribing Limits
Adults
Special Populations
Hepatic Impairment
Prolonged elimination.1 Consider dosage reduction.1 34 110 112 Manufacturer states that use in patients with severe hepatic impairment is not recommended.1
Renal Impairment
Some clinicians recommend that dosage be reduced by 25–50% in anuric patients.104 However, other clinicians state that dosage recommendations cannot be made for patients with renal impairment due to variability in plasma buspirone concentrations.204 205 (See Absorption under Pharmacokinetics.) Manufacturer states that use in patients with severe renal impairment is not recommended.1
Cautions for busPIRone
Contraindications
Warnings/Precautions
Warnings
MAO Inhibitors
Avoid concomitant use.1 2 63 (See Specific Drugs under Interactions.)
Psychiatric Indications
No established antipsychotic efficacy at usual dosages;1 2 51 61 62 70 80 83 84 85 86 87 88 89 90 100 112 122 should not be used in place of appropriate antipsychotic therapy.1 2
General Precautions
CNS Effects
Generally does not produce substantial impairment of cognitive or psychomotor function at usual dosages; however, CNS effects show interindividual variation and may not be predictable.1 2
Prudent to avoid concomitant use with alcohol.1 2 (See Specific Drugs under Interactions.)
Benzodiazepine or Sedative/Hypnotic Withdrawal
No cross-tolerance with benzodiazepines or other sedative/hypnotic drugs; will not prevent symptoms of withdrawal following cessation of such therapy.1 2 6 39 44 60 70 71 86 124 Withdraw therapy with such drugs gradually in patients being switched to buspirone, particularly following prolonged or relatively high-dose therapy.1 2 39 86
Dopaminergic Effects
Potential for causing changes in dopamine-mediated neurologic function (e.g., dystonia, parkinsonian-like manifestations, akathisia, tardive dyskinesia) not fully elucidated.1 186
Specific Populations
Pregnancy
Category B.1
Lactation
Buspirone and its metabolites are distributed into milk in rats.1 Avoid whenever clinically possible.1
Pediatric Use
Safety and efficacy not established in children <18 years of age.1 Has been used in pediatric patients 6–17 years of age with GAD without unusual adverse effects; however, dosage of 7.5–30 mg twice daily for 6 weeks was no more effective than placebo.1
Geriatric Use
No substantial differences in safety, efficacy, or phamacokinetic profile relative to younger adults; however, increased sensitivity cannot be ruled out.1
Hepatic Impairment
Prolonged elimination.1 Use with caution.1 34 110 112
Manufacturer states that use in patients with severe hepatic impairment is not recommended.1
Renal Impairment
Decreased clearance.1 Use with caution.1 34 104 112 Need for dosage adjustment not fully elucidated. (See Renal Impairment under Dosage and Administration.)34 104 112
Manufacturer states that use in patients with severe renal impairment is not recommended.1
Common Adverse Effects
Dizziness, nausea, headache, nervousness, drowsiness, light-headedness, excitement.1 2 5 36 37 38 42 45 58 61 62 89 114 123 130 191
Drug Interactions
Metabolized by CYP3A4.1 4 5 15 31 32 34 64 112 125
Drugs Affecting Hepatic Microsomal Enzymes
Possible pharmacokinetic interaction (increased plasma buspirone concentrations) with CYP3A4 inhibitors.1 Low buspirone dosage (i.e., 2.5 mg once or twice daily) recommended in patients receiving potent CYP3A4 inhibitor; base subsequent adjustments of buspirone and CYP3A4 inhibitor dosage on clinical assessment.1
Possible pharmacokinetic interaction (decreased plasma buspirone concentrations) with CYP3A4 inducers.1 May require dosage adjustment to maintain anxiolytic effect.1
Protein-bound Drugs
Possible displacement from binding sites of buspirone or other protein-bound drugs.1 2 34 94
One report of increased prothrombin time when buspirone was added to a regimen of warfarin, phenytoin, phenobarbital, digoxin, and levothyroxine (Synthroid); clinical importance unknown.1
Specific Drugs and Foods
Drug or Food |
Interaction |
Comments |
---|---|---|
Alcohol |
Does not appear to alter blood alcohol concentrations50 51 73 or substantially potentiate alcohol-induced impairment of psychomotor and cognitive performance2 5 10 34 48 50 51 55 73 74 76 90 93 105 112 |
Prudent to avoid concomitant use1 |
Amitriptyline |
||
Cimetidine |
Clinical importance not established1 |
|
CNS depressants (e.g., analgesics, antihistamines, sedative/hypnotics including benzodiazepines) |
Possible CNS depression, although few interactions reported to date2 5 34 48 63 76 81 91 93 112 123 129 |
|
Diltiazem |
Increased plasma buspirone concentrations1 |
Buspirone dosage adjustment may be necessary1 |
Erythromycin |
Increased plasma buspirone concentrations1 204 and increased incidence of adverse effects attributable to buspirone1 |
Decrease buspirone dosage (e.g., 2.5 mg twice daily); base subsequent adjustments of buspirone and erythromycin dosage on clinical assessment1 |
Grapefruit juice |
Increased plasma buspirone concentrations1 |
Avoid drinking large amounts of grapefruit juice1 |
Haloperidol |
Clinical importance not established1 |
|
Itraconazole |
Increased plasma buspirone concentrations1 204 and increased incidence of adverse effects attributable to buspirone1 |
Decrease buspirone dosage (e.g., 2.5 mg daily); base subsequent adjustments of buspirone and itraconazole dosage on clinical assessment1 |
MAO inhibitors (e.g., tranylcypromine) |
Increased blood pressure;1 2 63 196 197 possible contribution to a fatal case of serotonin syndrome when used concomitantly with fluoxetine and tranylcypromine201 202 |
Do not use concomitantly;1 2 63 196 197 allow 10 days between discontinuance of MAO inhibitor and administration of buspirone196 197 |
Nefazodone |
Marked increase in plasma buspirone concentration; slight increase in concentrations of nefazodone and its metabolite1 |
Use with caution; decrease buspirone dosage (e.g., 2.5 mg daily); base subsequent adjustments of buspirone and nefazodone dosage on clinical assessment1 |
Rifampin |
Decreased plasma buspirone concentrations1 |
Adjust buspirone dosage as necessary to maintain anxiolytic effect1 |
Trazodone |
||
Verapamil |
Increased plasma buspirone concentrations1 |
Buspirone dosage adjustment may be necessary1 |
busPIRone Pharmacokinetics
Absorption
Bioavailability
Rapidly1 2 4 5 29 34 64 88 and almost completely absorbed following oral administration.2 34 64 112 116 Undergoes extensive first-pass metabolism in the liver;1 2 4 31 34 64 112 116 only about 4% of a dose reaches systemic circulation unchanged.2 31 34 104 112 116
Peak plasma concentrations occur within 40–90 minutes following oral administration.1 2 4 29 31 34 64 65 115
Onset
Anxiolytic activity may be apparent within the first 2 weeks,38 123 but optimum therapeutic effect usually requires at least 3–4 weeks39 41 123 193 and occasionally up to 4–6 weeks.87
Food
Food may delay absorption, thereby decreasing the extent of presystemic clearance1 2 34 and increasing the amount of unchanged buspirone reaching systemic circulation.1 2 5 30 34
Distribution
Extent
Extensively distributed into body tissues in animals.112 127
Buspirone and metabolites are distributed into milk in animals;1 123 extent of distribution into human milk is unknown.1 123 185
Plasma Protein Binding
Approximately 86–95%1 2 34 104 203 (mainly albumin; α1-acid glycoprotein to a lesser extent).34 35
Elimination
Metabolism
Extensively metabolized in the liver, mainly via oxidation by CYP3A4.1 4 5 15 31 32 34 64 112 125
In animals, the major active metabolite (1-pyrimidinylpiperazine)1 5 15 31 32 33 34 112 125 has about 20–25% of the anxiolytic activity of buspirone but is present in the brain in concentrations up to 15-to 30-fold greater than those of unchanged drug.1 2 34 112 125 129 Contribution to the drug’s effects in humans is not fully elucidated.2 5 15
Elimination Route
Excreted principally in urine and to a lesser extent in feces;1 2 34 112 excreted mainly as metabolites.2 5 31 34 64 104 112
Half-life
2–4 hours.1 2 4 15 29 31 34 65 104 110 112 115 116
Special Populations
Elimination half-life may be prolonged in patients with renal impairment, particularly in those with anuria,34 104 and in patients with liver impairment, including those with cirrhosis.1 34 110 112
Stability
Storage
Oral
Tablets
Tight, light-resistant containers at ≤30°C.1 185
Actions
-
Anxioselective drug;4 5 7 9 11 12 13 22 24 48 70 78 79 88 112 133 163 unlike benzodiazepines, has no anticonvulsant1 2 6 9 11 12 13 16 18 22 68 70 78 88 112 133 163 176 or muscle relaxant1 2 6 9 11 12 13 22 68 70 78 79 88 112 163 176 activity, does not substantially impair psychomotor function,11 13 70 73 74 76 78 90 112 133 and has little sedative effect.1 2 6 9 11 13 16 18 22 40 41 45 48 61 62 78 112 133 163
-
Mechanism of action is unknown; appears to be complex and distinct from that of benzodiazepines;1 2 4 5 6 7 8 11 12 13 15 16 68 70 78 88 112 131 133 163 177 187 probably involves several central neurotransmitter systems.1 2 5 6 7 8 9 12 15 68 70 78 88 112 133 187
-
Effects may be mediated by a variety of CNS sites1 2 5 6 7 8 9 12 15 68 70 78 101 103 112 133 138 140 141 143 144 including serotonergic, 1 2 5 6 7 8 9 10 11 15 68 69 70 78 88 101 102 103 112 133 135 136 137 138 139 140 141 142 143 144 146 147 148 149 163 182 187 190 dopaminergic, 1 2 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 24 32 66 68 70 78 79 88 111 112 133 163 cholinergic, 12 24 32 78 88 and noradrenergic (α-adrenergic) systems.5 7 9 11 12 15 22 23 68 70 78 88 112 133 163 182 No appreciable affinity for the benzodiazepine receptor complex.1 2 6 11 14 15 16 66 78 79 112 133
Advice to Patients
-
Potential for drug to impair mental alertness or physical coordination; avoid driving or operating machinery until effects on individual are known.1
-
Importance of taking buspirone in a consistent manner, either always with or always without food.1
-
Importance of not drinking large quantities of grapefruit juice.1
-
Symptomatic relief may occur within 2 weeks,38 123 but optimum effect usually requires at least 3–4 weeks39 41 123 193 and occasionally 4–6 weeks of therapy.87
-
Importance of informing clinicians of existing or contemplated concomitant therapy, including prescription and OTC drugs, and alcohol consumption.1 Prudent to avoid alcohol-containing beverages or products.1
-
Importance of women informing clinicians if they are or plan to become pregnant or plan to breast-feed.1
-
Importance of informing patients of other important precautionary information. (See Contraindications and also Warnings/Precautions under Cautions.)1
Additional Information
The American Society of Health-System Pharmacists, Inc. represents that the information provided in the accompanying monograph was formulated with a reasonable standard of care, and in conformity with professional standards in the field. Readers are advised that decisions regarding use of drugs are complex medical decisions requiring the independent, informed decision of an appropriate health care professional, and that the information contained in the monograph is provided for informational purposes only. The manufacturer’s labeling should be consulted for more detailed information. The American Society of Health-System Pharmacists, Inc. does not endorse or recommend the use of any drug. The information contained in the monograph is not a substitute for medical care.
Preparations
Excipients in commercially available drug preparations may have clinically important effects in some individuals; consult specific product labeling for details.
Please refer to the ASHP Drug Shortages Resource Center for information on shortages of one or more of these preparations.
* available from one or more manufacturer, distributor, and/or repackager by generic (nonproprietary) name
Routes |
Dosage Forms |
Strengths |
Brand Names |
Manufacturer |
---|---|---|---|---|
Oral |
Tablets |
5 mg* |
BuSpar (scored) |
Bristol-Myers Squibb |
Buspirone Hydrochloride (scored) |
Aegis |
|||
7.5 mg* |
Buspirone Hydrochloride (with povidone; scored) |
Par |
||
10 mg* |
BuSpar (multi-scored) |
Bristol-Myers Squibb |
||
Buspirone Hydrochloride (scored) |
Aegis |
|||
15 mg* |
BuSpar Dividose (scored) |
Bristol-Myers Squibb |
||
Buspirone Hydrochloride (multi-scored) |
Aegis |
|||
30 mg* |
BuSpar Dividose (multi-scored) |
Bristol-Myers Squibb |
||
Buspirone Hydrochloride (multi-scored) |
Mylan |
AHFS DI Essentials™. © Copyright 2025, Selected Revisions June 10, 2024. American Society of Health-System Pharmacists, Inc., 4500 East-West Highway, Suite 900, Bethesda, Maryland 20814.
References
1. Bristol-Myers Squibb. BuSpar (buspirone hydrochloride) prescribing information. Princeton, NJ; 2002 Feb.
2. Mead Johnson Pharmaceuticals. BuSpar (buspirone hydrochloride) manufacturer’s information. Evansville, IN; 1986 Dec.
3. Mead Johnson Pharmaceuticals. BuSpar (buspirone hydrochloride) product information. Evansville, IN; (undated).
4. Temple DL Jr, Yevich JP, New JS. Buspirone: chemical profile of a new class of anxioselective agents. J Clin Psychiatry. 1982; 43(12 Part 2):4-10. https://pubmed.ncbi.nlm.nih.gov/6185470
5. Kastenholz KV, Crismon ML. Buspirone, a novel nonbenzodiazepine anxiolytic. Clin Pharm. 1984; 3:600-7. https://pubmed.ncbi.nlm.nih.gov/6150781
6. Riblet LA, Taylor DP, Eison MS et al. Pharmacology and neurochemistry of buspirone. J Clin Psychiatry. 1982; 43(12 Part 2):11-6. https://pubmed.ncbi.nlm.nih.gov/6130068
7. Skolnick P, Weissman BA, Youdim MBH. Monoaminergic involvement in the pharmacological actions of buspirone. Br J Pharmacol. 1985; 86:637-44. https://pubmed.ncbi.nlm.nih.gov/2933109 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1916732/
8. Eison AS, Eison MS, Stanley M et al. Serotonergic mechanisms in the behavioral effects of buspirone and gepirone. Pharmacol Biochem Behav. 1986; 24:701-7. https://pubmed.ncbi.nlm.nih.gov/2871564
9. Hjorth S, Carlsson A. Buspirone: effects on central monoaminergic transmission—possible relevance to animal experimental and clinical findings. Eur J Pharmacol. 1982; 83:299-303. https://pubmed.ncbi.nlm.nih.gov/6129148
10. Glaser T, Traber J. Buspirone: action on serotonin receptors in calf hippocampus. Eur J Pharmacol. 1983; 88:137-8. https://pubmed.ncbi.nlm.nih.gov/6133764
11. Taylor DP, Allen LE, Becker JA et al. Changing concepts of the biochemical action oi the anxioselective drug, buspirone. Drug Dev Res. 1984; 4:95-108.
12. Eison MS, Eison AS. Buspirone as a midbrain modulator: anxiolysis unrelated to traditional benzodiazepine mechanisms. Drug Dev Res. 1984; 4:109-19.
13. Stanton HC, Taylor DP, Riblet LA. Buspirone—an anxioselective drug with dopaminergic action. In: Chronister RB, DeFrance IF, eds. The neurobiology of the nucleus accumbens (proceedings symposium). Brunswick, ME: Haer Institute; 1981:316-21.
14. Cimino M, Ponzio F, Achilli G et al. Dopaminergic effects of buspirone, a novel anxiolytic agent. Biochem Pharmacol. 1983; 32:1069-74. https://pubmed.ncbi.nlm.nih.gov/6838654
15. Leonard BE. Neuropharmacological profile of buspirone: a nonbenzodiazepine anxiolytic with specific mid-brain modulating properties. Br J Clin Pract. 1985; 38(Symp Suppl):74-82.
16. McMillen BA, Matthews RT, Sanghera MK et al. Dopamine receptor antagonism by the novel anti-anxiety drug, buspirone. J Neurosci. 1983; 3:733-8. https://pubmed.ncbi.nlm.nih.gov/6131948
17. Kaulen P, Brüning G, Schneider U et al. Autoradiographic localization of [3H]buspirone binding sites in rat brain. Neurosci Lett. 1985; 53:191-5. https://pubmed.ncbi.nlm.nih.gov/3982707
18. McMillen BA. Comparative chronic effects of buspirone or neuroleptics on rat brain dopaminergic neurotransmission. J Neural Transm. 1985; 64:1-12. https://pubmed.ncbi.nlm.nih.gov/2866230
19. Wood PL, Nair NPV, Lal S et al. Buspirone: a potential atypical neuroleptic. Life Sci. 1983; 33:269-73. https://pubmed.ncbi.nlm.nih.gov/6135133
20. McMillen BA, Mattiace LA. Comparative neuropharmacology of buspirone and MJ-13805, a potential anti-anxiety drug. J Neural Transm. 1983; 57:255-65. https://pubmed.ncbi.nlm.nih.gov/6140299
21. Oakley NR, Jones BJ. Buspirone enhances [3H]flunitrazepam binding in vivo. Eur J Pharmacol. 1983; 87:499-500. https://pubmed.ncbi.nlm.nih.gov/6133760
22. Sanghera MK, McMillen BA, German DC. Buspirone, a non-benzodiazepine anxiolytic, increases locus coeruleus noradrenergic neuronal activity. Eur J Pharmacol. 1983; 86:107-10.
23. Kozak W, Valzelli L, Garattini S. Anxiolytic activity on locus coeruleus-mediated suppression of muricidal aggression. Eur J Pharmacol. 1984; 105:323-6. https://pubmed.ncbi.nlm.nih.gov/6150860
24. Kolasa K, Fusi R, Garattini S et al. Neurochemical effects of buspirone, a novel psychotropic drug, on the central cholinergic system. J Pharm Pharmacol. 1982; 34:314-7. https://pubmed.ncbi.nlm.nih.gov/6123570
25. Geller I, Hartmann RJ. Effects of buspirone on operant behavior of laboratory rats and cynomologus monkeys. J Clin Psychiatry. 1982; 43(12 Part 2):25-32. https://pubmed.ncbi.nlm.nih.gov/6130070
26. Sathananthan GL, Sanghvi I, Phillips N et al. MJ 9022: correlation between neuroleptic potential and stereotypy. Curr Ther Res. 1975; 18:701-5. https://pubmed.ncbi.nlm.nih.gov/1208
27. Meltzer HY, Flemming R, Robertson A. The effect of buspirone on prolactin and growth hormone secretion in man. Arch Gen Psychiatry. 1983; 40:1099-1102. https://pubmed.ncbi.nlm.nih.gov/6138009
28. Meltzer HY, Simonovic M, Fang VS et al. Effect of buspirone on rat plasma prolactin levels and striatal dopamine turnover. Psychopharmacology. 1982; 78:49-53. https://pubmed.ncbi.nlm.nih.gov/6128756
29. Gammans RE, Mayol RF, Mackenthun AV et al. The relationship between buspirone bioavailability and dose in healthy subjects. Biopharm Drug Dispos. 1985; 6:139-45. https://pubmed.ncbi.nlm.nih.gov/2860931
30. Mayol RF, Gammans RE, Mackenthun AV et al. The effect of food on the bioavailability of buspirone hydrochloride. Clin Res. 1983; 31:631A.
31. Caccia S, Conti I, Vigano G et al. 1-(2-Pyrimidinyl)-piperazine as active metabolite of buspirone in man and rat. Pharmacology. 1986; 33:46-51. https://pubmed.ncbi.nlm.nih.gov/2874572
32. Garattini S, Caccia S, Mennini T. Notes on buspirone’s mechanisms of action. J Clin Psychiatry. 1982; 43(12 Part 2):19-22. https://pubmed.ncbi.nlm.nih.gov/6130069
33. Garattini S. Active drug metabolites: an overview of their relevance in clinical pharmacokinetics. Clin Pharmacokinet. 1985; 10:216-27. https://pubmed.ncbi.nlm.nih.gov/2861928
34. Gammans RE, Mayol RF, Labudde JA. Metabolism and disposition of buspirone. Am J Med. 1986; 80(Suppl 3B):41-51. https://pubmed.ncbi.nlm.nih.gov/3515929
35. Bullen WW, Bivens DL, Gammans RE et al. The binding of buspirone to human plasma proteins. Fed Proc. 1985; 44:1123.
36. Feighner JP, Merideth CH, Hendrickson GA. A double-blind comparison of buspirone and diazepam in outpatients with generalized anxiety disorder. J Clin Psychiatry. 1982; 43(12 Part 2):103-7. https://pubmed.ncbi.nlm.nih.gov/6130066
37. Goldberg HL, Finnerty RJ. The comparative efficacy of buspirone and diazepam in the treatment of anxiety. Am J Psychiatry. 1979; 136:1184-7. https://pubmed.ncbi.nlm.nih.gov/382878
38. Jacobson AF, Dominguez RA, Goldstein BJ et al. Comparison of buspirone and diazepam in generalized anxiety disorder. Pharmacotherapy. 1985; 5:290-6. https://pubmed.ncbi.nlm.nih.gov/2866493
39. Pecknold JC, Familamiri P, Chang H et al. Buspirone: anxiolytic? Prog Neuro Psychopharmacol Biol Psychiatry. 1985; 9:639-42. (IDIS 222145)
40. Goldberg HL, Finnerty R. Comparison of buspirone in two separate studies. J Clin Psychiatry. 1982; 43(12 Part 2):87-91. https://pubmed.ncbi.nlm.nih.gov/6759499
41. Wheatley D. Buspirone: multicenter efficacy study. J Clin Psychiatry. 1982; 43(12 Part 2):92-4. https://pubmed.ncbi.nlm.nih.gov/6130079
42. Cohn JB, Bowden CL, Fisher JG et al. Double-blind comparison of buspirone and clorazepate in anxious outpatients. Am J Med. 1986; 80(Suppl 3B):10-6. https://pubmed.ncbi.nlm.nih.gov/2870640
43. Bond A, Lader M, Shrotriya R. Comparative effects of a repeated dose regime of diazepam and buspirone on subjective ratings, psychological tests and the EEG. Eur J Clin Pharmacol. 1983; 24:463-7. https://pubmed.ncbi.nlm.nih.gov/6134624
44. Schweizer E, Rickels K, Lucki I. Resistance to the anti-anxiety effect of buspirone in patients with a history of benzodiazepine use. N Engl J Med. 1986; 314:719-20. https://pubmed.ncbi.nlm.nih.gov/2869408
45. Cohn JB, Wilcox CS. Low sedation potential of buspirone compared with alprazolam and lorazepam in the treatment of anxious patients: a double-blind study. J Clin Psychiatry. 1986; 47:409-12. https://pubmed.ncbi.nlm.nih.gov/2874128
46. Turnbull JM, Turnbull SK. Management of specific anxiety disorders in the elderly. Geriatrics. 1985; 40:75-82. https://pubmed.ncbi.nlm.nih.gov/4007503
47. Napoliello MJ. An interim multicentre report on 677 anxious geriatric out-patients treated with buspirone. Br J Clin Pract. 1986; 40:71-3. https://pubmed.ncbi.nlm.nih.gov/2871858
48. Seidel WF, Cohen SA, Bliwise NG et al. Buspirone: an anxiolytic without sedative effect. Psychopharmacology. 1985; 87:371-3. https://pubmed.ncbi.nlm.nih.gov/2867573
49. Lader M. Psychological effects of buspirone. J Clin Psychiatry. 1982; 43(12 Part 2):62-7. https://pubmed.ncbi.nlm.nih.gov/6130075
50. Seppala T, Aranko K, Mattila MJ et al. Effects of alcohol on buspirone and lorazepam actions. Clin Pharmacol Ther. 1982; 32:201-7. https://pubmed.ncbi.nlm.nih.gov/6124334
51. Moskowitz H, Smiley A. Effects of chronically administered buspirone and diazepam on driving-related skills performance. J Clin Psychiatry. 1982; 43(12 Part 2):45-55. https://pubmed.ncbi.nlm.nih.gov/6130073
52. Cole JO, Orzack MH, Beake B et al. Assessment of the abuse liability of buspirone in recreational sedative users. J Clin Psychiatry. 1982; 43(12 Part 2):69-74. https://pubmed.ncbi.nlm.nih.gov/6130076
53. Cohn JB, Wilcox CS, Meltzer HY. Neuroendocrine effects of buspirone in patients with generalized anxiety disorder. Am J Med. 1986; 80(Suppl 3B):36-40. https://pubmed.ncbi.nlm.nih.gov/3963033
54. Schweizer EE, Amsterdam J, Rickels K et al. Open trial of buspirone in the treatment of major depressive disorder. Psychopharmacol Bull. 1986; 22:183-5. https://pubmed.ncbi.nlm.nih.gov/2873610
55. Meyer RE. Anxiolytics and the alcoholic patient. J Stud Alcohol. 1986; 47:269-73. https://pubmed.ncbi.nlm.nih.gov/2875216
56. Frazer GA, Lapierre YD. The effect of buspirone on panic disorder: a case report. J Clin Psychopharmacol. 1987; 7:118-9. https://pubmed.ncbi.nlm.nih.gov/2884236
57. Hammerstad JP, Carter J, Nutt JG et al. Buspirone in Parkinson’s disease. Clin Neuropharmacol. 1986; 9:556-60. https://pubmed.ncbi.nlm.nih.gov/3026624
58. Ludwig CL, Weinberger DR, Bruno G et al. Buspirone, Parkinson’s disease, and the locus ceruleus. Clin Neuropharmacol. 1986; 9:373-8. https://pubmed.ncbi.nlm.nih.gov/2873889
59. Napoliello MJ. A study of buspirone coprescribed with antidepressants in 184 anxious ambulatory patients. Curr Ther Res. 1986; 40:917-23.
60. Jerkovich GS, Preskorn SH. Failure of buspirone to protect against lorazepam withdrawal symptoms. JAMA. 1987; 258:204-5. https://pubmed.ncbi.nlm.nih.gov/2885432
61. Newton RE, Marunycz JD, Alderdice MT et al. Review of the side-effect profile of buspirone. Am J Med. 1986; 80(Suppl 3B):17-21. https://pubmed.ncbi.nlm.nih.gov/2870641
62. Newton RE, Casten GP, Alms DR et al. The side effect profile of buspirone in comparison to active controls and placebo. J Clin Psychiatry. 1982; 43(12 Part 2):100-2. https://pubmed.ncbi.nlm.nih.gov/6130065
63. Schnabel T Jr. Evaluation of the safety and side effects of antianxiety agents. Am J Med. 1987; 82(Suppl 5A):7-13. https://pubmed.ncbi.nlm.nih.gov/2884874
64. Gammans RE, Mayol RF, LaBudde JA et al. Metabolic fate of14C/15N-buspirone in man. Fed Proc. 1982; 41:1335.
65. Mayol RF, Marvel CJ, LaBudde JA. Development and validation of a radioimmunoassay for buspirone. Fed Proc. 1981; 40:684.
66. Weissman BA, Barrett JE, Brady LS et al. Behavioral and neurochemical studies on the anticonflict actions of buspirone. Drug Dev Res. 1984; 4:83-93.
67. Riblet LA, Allen LE, Hyslop DK et al. Pharmacologic activity of buspirone, a novel non-benzodiazepine antianxiety agent. Fed Proc. 1980; 39:752.
68. Eison AS, Temple DL Jr. Buspirone: review of its pharmacology and current perspectives on its mechanism of action. Am J Med. 1986; 80(Suppl 3B):1-9. https://pubmed.ncbi.nlm.nih.gov/2870639
69. VanderMaelen CP, Wilderman RC. Iontophoretic and systemic administration of the non-benzodiazepine anxiolytic drug buspirone causes inhibition of serotonergic dorsal raphe neurons in rats. Fed Proc. 1984; 43:947.
70. Taylor DP, Eison MS, Riblet LA et al. Pharmacological and clinical effects of buspirone. Pharmacol Biochem Behav. 1985; 23:687-93. https://pubmed.ncbi.nlm.nih.gov/2866549
71. Schweizer E, Rickels K. Failure of buspirone to manage benzodiazepine withdrawal. Am J Psychiatry. 1986; 143:1590-2. https://pubmed.ncbi.nlm.nih.gov/2878622
72. Rickels K, Weisman K, Norstad N et al. Buspirone and diazepam in anxiety: a controlled study. J Clin Psychiatry. 1982; 43(12 Part 2):81-6. https://pubmed.ncbi.nlm.nih.gov/6130078
73. Mattila MJ, Aranko K, Seppala T. Acute effects of buspirone and alcohol on psychomotor skills. J Clin Psychiatry. 1982; 43(12 Part 2):56-60. https://pubmed.ncbi.nlm.nih.gov/6130074
74. Erwin CW, Linnoila M, Hartwell J et al. Effects of buspirone and diazepam, alone and in combination with alcohol, on skilled performance and evoked potentials. J Clin Psychopharmacol. 1986; 6:199-208. https://pubmed.ncbi.nlm.nih.gov/3734141
75. Eison MS. Lack of withdrawal signs of dependence following cessation of treatment or Ro-15,1788 administration to rats chronically treated with buspirone. Neuropsychobiology. 1986; 16:15-8. https://pubmed.ncbi.nlm.nih.gov/3106850
76. Mattila M, Seppala T, Mattila MJ. Combined effects of buspirone and diazepam on objective and subjective tests of performance in healthy volunteers. Clin Pharmacol Ther. 1986; 40:620-6. https://pubmed.ncbi.nlm.nih.gov/3780124
77. Balster RL, Woolverton WL. Intravenous buspirone self-administration in rhesus monkeys. J Clin Psychiatry. 1982; 43(12 Part 2):34-7. https://pubmed.ncbi.nlm.nih.gov/6130071
78. Riblet LA, Eison AS, Eison MS et al. Neuropharmacology of buspirone. Psychopathology. 1984; 17(Suppl 3):69-78. https://pubmed.ncbi.nlm.nih.gov/6150510
79. Riblet LA, Eison AS, Eison MS et al. Buspirone: an anxioselective alternative for the management of anxiety disorders. Prog Neuro-Psychopharmacol & Biol Psychiatry. 1983; 7:663-8.
80. Anon. Drugs for psychiatric disorders. Med Lett Drugs Ther. 1986; 28:99-106. https://pubmed.ncbi.nlm.nih.gov/3762490
81. Rickels K. Nonbenzodiazepine anxiolytics: clinical usefulness. J Clin Psychiatry. 1983; 44:38-43. https://pubmed.ncbi.nlm.nih.gov/6139368
82. Rickels K. Clinical studies of ″specific″ anxiolytics as therapeutic agents. Psychopharmacol Ser. 1987; 3:88-95. https://pubmed.ncbi.nlm.nih.gov/2881295
83. Anon. Buspirone: a non-benzodiazepine for anxiety. Med Lett Drugs Ther. 1986; 28:117-8. https://pubmed.ncbi.nlm.nih.gov/2878352
84. Griffith JD, Jasinski DR, Casten GP et al. Investigation of the abuse liability of buspirone in alcohol-dependent patients. Am J Med. 1986; 80(Suppl 3B):30-5. https://pubmed.ncbi.nlm.nih.gov/3963032
85. File SE. Aversive and appetitive properties of anxiogenic and anxiolytic agents. Behav Brain Res. 1986; 21:189-94. https://pubmed.ncbi.nlm.nih.gov/2876714
86. Lader M, Olajide D. A comparison of buspirone and placebo in relieving benzodiazepine withdrawal symptoms. J Clin Psychopharmacol. 1987; 7:11-5. https://pubmed.ncbi.nlm.nih.gov/2880872
87. Tyrer P, Murphy S, Owen RT. The risk of pharmacological dependence with buspirone. Br J Clin Pract. 1985; 38(Symp Suppl):91-3.
88. Goldberg HL. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Pharmacotherapy. 1984; 4:315-24. https://pubmed.ncbi.nlm.nih.gov/6151170
89. Jann MW. Buspirone: an update on a unique anxiolytic agent. Pharmacotherapy. 1988; 8:100-16. https://pubmed.ncbi.nlm.nih.gov/3041384
90. Smiley A, Moskowitz H. Effects of long-term administration of buspirone and diazepam on driver steering control. Am J Med. 1986; 80(Suppl 3B):22-9. https://pubmed.ncbi.nlm.nih.gov/3963031
91. Gershon S. Drug interactions in controlled clinical trials. J Clin Psychiatry. 1982; 43(12 Part 2):95-8. https://pubmed.ncbi.nlm.nih.gov/6130080
92. Lader M. Assessing the potential for buspirone dependence or abuse and effects of its withdrawal. Am J Med. 1987; 82(Suppl 5A):20-6. https://pubmed.ncbi.nlm.nih.gov/3296749
93. Schuckit MA. Alcohol and drug interactions with antianxiety medications. Am J Med. 1987; 82(Suppl 5A):27-33. https://pubmed.ncbi.nlm.nih.gov/2884873
94. Gammans RE, Bullen WW, Briner L et al. The effects of buspirone binding to the binding of digoxin, dilantin, propranolol, and warfarin to human plasma. Fed Proc. 1985; 44:1123.
95. Goldberg HL. Buspirone—a new antianxiety agent not chemically related to any presently marketed drugs. Psychopharmacol Bull. 1979; 15:90-2. https://pubmed.ncbi.nlm.nih.gov/34846
96. Bond AJ, Lader MH. Comparative effects of diazepam and buspirone on subjective feelings, psychological tests and the EEG. Int Pharmacopsychiatry. 1981; 16:212-20. https://pubmed.ncbi.nlm.nih.gov/6121766
97. McKinney GR (Mead Johnson Pharmaceutical Division, Evansville, IN): Personal communication; 1987 June 19.
98. Murphy SM, Owen RT, Tyrer PJ. Withdrawal symptoms after six weeks’ treatment with diazepam. Lancet. 1984; 2:1389. https://pubmed.ncbi.nlm.nih.gov/6150380
99. Othmer E, Othmer SC. Effect of buspirone on sexual dysfunction in patients with generalized anxiety disorder. J Clin Psychiatry. 1987; 48:201-3. https://pubmed.ncbi.nlm.nih.gov/2883173
100. Lucki I, Rickels K, Giesecke MA et al. Differential effects of the anxiolytic drugs, diazepam and buspirone, on memory function. Br J Clin Pharmacol. 1987; 23:207-11. https://pubmed.ncbi.nlm.nih.gov/2881573 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1386070/
101. Spencer DG Jr, Traber J. The interceptive discriminative stimuli induced by the novel putative anxiolytic TVX Q 7821: behavioral evidence for the specific involvement of serotonin 5-HT1A receptors. Psychopharmacology. 1987; 91:25-9. https://pubmed.ncbi.nlm.nih.gov/2881318
102. Peroutka SJ. Selective labeling of 5-HT1A and 5-HT1B binding sites in bovine brain. Brain Res. 1985; 344:167-71. https://pubmed.ncbi.nlm.nih.gov/4041865
103. Smith LM, Peroutka SJ. Differential effects of 5-hydroxytryptamine1A selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav. 1986; 24:1513-9. https://pubmed.ncbi.nlm.nih.gov/2942947
104. Caccia S, Vigano GL, Mingardi G et al. Clinical pharmacokinetics of oral buspirone in patients with impaired renal function. Clin Pharmacokinet. 1988; 14:171-7. https://pubmed.ncbi.nlm.nih.gov/3370902
105. Lader MH, Napoliello MJ. A study of buspirone co-prescribed with antihistamines in 68 anxious ambulatory patients. J Clin Psychopharmacol. 1988; 8:146-8. https://pubmed.ncbi.nlm.nih.gov/2897380
106. Ross CA. Buspirone in the treatment of tardive dyskinesia. Med Hypotheses. 1987; 22:321-8. https://pubmed.ncbi.nlm.nih.gov/2884555
107. Ross CA, Matas M. A clinical trial of buspirone and diazepam in the treatment of generalized anxiety disorder. Can J Psychiatry. 1987; 32:351-5. https://pubmed.ncbi.nlm.nih.gov/3308052
108. Fontaine R, Beaudry P, Beauclair L et al. Comparison of withdrawal of buspirone and diazepam: a placebo controlled study. Prog Neuro-Psychopharmacol & Biol Psychiatry. 1987; 11:189-97.
109. Olajide D, Lader M. A comparison of buspirone, diazepam, and placebo in patients with chronic anxiety states. J Clin Psychopharmacol. 1987; 7:148-52. https://pubmed.ncbi.nlm.nih.gov/2885344
110. Dalhoff K, Poulsen HE, Garred P et al. Buspirone pharmacokinetics in patients with cirrhosis. Br J Clin Pharmacol. 1987; 24:547-50. https://pubmed.ncbi.nlm.nih.gov/3689635 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1386319/
111. Seppala T, Ranta T, Shrotriya RC. Serum prolactin levels after buspirone in man. Med Biol. 1987; 65:61-3. https://pubmed.ncbi.nlm.nih.gov/3613693
112. Goa KL, Ward A. Buspirone: a preliminary review of its pharmacological properties and therapeutic efficacy as an anxiolytic. Drugs. 1986; 32:114-29. https://pubmed.ncbi.nlm.nih.gov/2874976
113. Singh AN, Beer M. A dose range-finding study of buspirone in geriatric patients with symptoms of anxiety. J Clin Psychopharmacol. 1988; 8:67-8. https://pubmed.ncbi.nlm.nih.gov/3351003
114. Feighner JP. Buspirone in the long-term treatment oi generalized anxiety disorder. J Clin Psychiatry. 1987; 48(Suppl):3-6. https://pubmed.ncbi.nlm.nih.gov/3320034
115. Gammans RE, Mayol RF, Mackenthun AV et al. Relationship between dose and bioavailability of buspirone. Clin Res. 1983; 31:628A.
116. Mayol RF, Adamson DS, Gammans RE et al. Pharmacokinetics and disposition of14C-buspirone HCL after intravenous and oral dosing in man. Clin Pharmacol Ther. 1985; 37:210.
117. Gosselin RE, Smith RP, Hodge HC. Clinical toxicology of commercial products. 5th ed. Baltimore: The Williams & Wilkins Co; 1984:I-10.
118. Molitor JA, Gammans RE, Carroll CM et al. Effect of buspirone on mixed function oxidase activity in rats. Fed Proc. 1985; 44:1257.
119. Gammans RE, Pfeffer M, Westrick ML et al. Lack of interaction between cimetidine and buspirone. Pharmacotherapy. 1987; 7:72-9. https://pubmed.ncbi.nlm.nih.gov/2888096
120. Hansten PD, Horn JR. Buspirone and cimetidine. Drug Interact Newsl. 1987; 7:38.
121. APA Work Group to Revise DSM-III. Diagnostic and statistical manual of mental disorders: DSM-III-R. 3rd ed, rev. Washington, DC: American Psychiatric Association. 1987:235-53,392.
122. Anon. Buspirone—a radical advance in the treatment of anxiety? Lancet. 1988; 1:804-6. Editorial.
123. Mead Johnson Pharmaceuticals. BuSpar (buspirone hydrochloride) information for the healthcare professional. Evansville, IN; 1986 Oct.
124. Lader M. Long-term anxiolytic therapy: the issue of drug withdrawal. J Clin Psychiatry. 1987; 48(Suppl):12-6. https://pubmed.ncbi.nlm.nih.gov/2891684
125. Gammans RE, Mayol RF, Eison MS. Concentration of buspirone and 1-pyrimidinylpiperazine, a metabolite, in rat brain. Fed Proc. 1983; 42:377.
126. Caccia S, Garattini S, Mancinelli A et al. Identification and quantitation of 1-(2-pyrimidinyl)piperazine, an active metabolite of the anxiolytic agent buspirone, in rat plasma and brain. J Chromatogr. 1982; 252:310-4. https://pubmed.ncbi.nlm.nih.gov/7182413
127. Caccia S, Fong MH, Guiso G. Disposition of the psychotropic drugs buspirone, MJ-13805 and piribedil, and of their common metabolite 1-(2-pyrimidinyl)-piperazine in the rat. Xenobiotica. 1985; 15:835-44. https://pubmed.ncbi.nlm.nih.gov/2866634
128. Ereshefsky L. Buspirone’s advantages over benzodiazepine anxiolytics. Clin Pharm. 1984; 3:654-5. https://pubmed.ncbi.nlm.nih.gov/6150783
129. Hatfield SM, Parenti MA. Buspirone hydrochloride. Hosp Pharm. 1987; 22:580-92.
130. Fabre LF. Double-blind comparison of buspirone with diazepam in anxious patients. Curr Ther Res. 1987; 41:751-9.
131. Yevich JP, Temple DL Jr, New JS et al. Buspirone analogues: 1. Structure-activity relationships in a series of N-aryl-and heteroarylpiperazine derivatives. J Med Chem. 1983; 26:194-203. https://pubmed.ncbi.nlm.nih.gov/6131130
132. New JS, Yevich JP, Eison MS et al. Buspirone analogues: 2. Structure-activity relationships of aromatic imide derivatives. J Med Chem. 1986; 29:1476-82. https://pubmed.ncbi.nlm.nih.gov/2874226
133. Williams M. Anxioselective anxiolytics. J Med Chem. 1983; 26:619-28. https://pubmed.ncbi.nlm.nih.gov/6132997
134. Trulson ME, Preussler DW, Howell GA et al. Raphe unit activity in freely moving cats: effects of benzodiazepines. Neuropharmacology. 1982; 21:1045-50. https://pubmed.ncbi.nlm.nih.gov/6292767
135. Eison MS, VanderMaelen CP, Matheson GK et al. Interactions of the anxioselective agent buspirone with central serotonergic systems. Soc Neurosci Abstr. 1983; 9:435.
136. Van de Kar LD, Urban JH, Lorens SA et al. The non-benzodiazepine anxiolytic buspirone inhibits stess-induced renin secretion and lowers heart rate. Life Sci. 1985; 36:1149-55. https://pubmed.ncbi.nlm.nih.gov/2858796
137. Offord SJ, Ordway GA, Frazer A. Application of [125I]iodocyanopindolol to measure 5-hydroxytryptamine1B receptors in the brain of the rat. J Pharmacol Exp Ther. 1988; 244:144-53. https://pubmed.ncbi.nlm.nih.gov/3335996
138. Wilkinson LO, Abercrombie ED, Rasmussen K et al. Effect of buspirone on single unit activity in locus coeruleus and dorsal raphe nucleus in behaving cats. Eur J Pharmacol. 1987; 136:123-7. https://pubmed.ncbi.nlm.nih.gov/3595712
139. Peroutka SJ, Mauk MD, Kocsis JD. Modulation of neuronal activity in the hippocampus by 5-hydroxytryptamine and 5-hydroxytryptamine1A selective drugs. Neuropharmacology. 1987; 26:139-46. https://pubmed.ncbi.nlm.nih.gov/2884586
140. Trulson ME, Trulson TJ. Buspirone decreases the activity oi serotonin-containing neurons in the dorsal raphe in freely-moving cats. Neuropharmacology. 1986; 25:1263-6. https://pubmed.ncbi.nlm.nih.gov/2879255
141. VanderMaelen CP, Matheson GK, Wilderman RC et al. Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol. 1986; 129:123-30. https://pubmed.ncbi.nlm.nih.gov/2876903
142. Rowan MJ, Anwyl R. Neurophysiological effects of buspirone and isapirone in the hippocampus: comparison with 5-hydroxytryptamine. Eur J Pharmacol. 1987; 132:93-6.
143. Mansbach RS, Barrett JE. Discriminative stimulus properties of buspirone in the pigeon. J Pharmacol Exp Ther. 1987; 240:364-9. https://pubmed.ncbi.nlm.nih.gov/3806400
144. Gardner CR. Recent developments in 5HT-related pharmacology of animal models of anxiety. Pharmacol Biochem Behav. 1986; 24:1479-85. https://pubmed.ncbi.nlm.nih.gov/2873594
145. Davis M, Cassella JV, Kehne JH. Serotonin does not mediate anxiolytic effects of buspirone in the fear-potentiated paradigm: comparison with 8-OH-DPAT and ipsapirone. Psychopharmacology (Berl). 1988; 94:14-20. https://pubmed.ncbi.nlm.nih.gov/2894698
146. Pellow S, Johnston AL, File SE. Selective agonists and antagonists for 5-hydroxytryptamine receptor subtypes, and interactions with yohimbine and FG 7142 using the elevated plus-maze test in the rat. J Pharm Pharmacol. 1987; 39:917-28. https://pubmed.ncbi.nlm.nih.gov/2892916
147. Kennett GA, Marcou M, Dourish CT et al. Single administration of 5-HT agonists decreases 5-HT1A presynaptic, but not receptor-mediated responses: relationship to antidepressant-like action. Eur J Pharmacol. 1987; 138:53-60. https://pubmed.ncbi.nlm.nih.gov/2442002
148. Kennett GA, Dourish CT, Curzon G. Antidepressant-like action of 5-HT1A agonists and conventional antidepressants in an animal model of depression. Eur J Pharmacol. 1987; 134:265-74. https://pubmed.ncbi.nlm.nih.gov/2883013
149. Mennini T, Gobbi M, Ponzio F et al. Neurochemical effects of buspirone in rat hippocampus: evidence for selective activation of 5HT neurons. Arch Int Pharmacodyn Ther. 1986; 279:40-9. https://pubmed.ncbi.nlm.nih.gov/2421657
150. Witkin JM, Mansbach RS, Barrett JE et al. Behavioral studies with anxiolytic drugs: IV. Serotonergic involvement in the effects of buspirone on punished behavior of pigeons. J Pharmacol Exp Ther. 1987; 243:970-7. https://pubmed.ncbi.nlm.nih.gov/2891840
151. Peroutka SJ, Huang S, Allen GS. Canine basilar artery contractions mediated by 5-hydroxytryptamine1A receptors. J Pharmacol Exp Ther. 1986; 237:901-6. https://pubmed.ncbi.nlm.nih.gov/2940360
152. Zisook S. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Commentary 1. Pharmacotherapy. 1984; 4:321-2.
153. Ereshefsky L. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Commentary 2. Pharmacotherapy. 1984; 4:322.
154. Lydiard RB. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Commentary 3. Pharmacotherapy. 1984; 4:322-3.
155. Wells BG. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Commentary 4. Pharmacotherapy. 1984; 4:323-4.
156. Morton WA Jr. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Commentary 5. Pharmacotherapy. 1984; 4:324.
157. Schatzberg AF. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Commentary 6. Pharmacotherapy. 1984; 4:324.
158. Beaumont G. Buspirone: its potential role in the treatment of general practice anxiety. Br J Clin Pract. 1985; 38(Symp Suppl):100-6.
159. Perry PJ. Assessment of addiction liability of benzodiazepines and buspirone. Drug Intell Clin Pharm. 1985; 19:657-9. https://pubmed.ncbi.nlm.nih.gov/2864227
160. Tyrer P, Owen R. Anxiety in primary care: is short-term drug treatment appropriate? J Psychiatr Res. 1984; 18:73-8.
161. McMillen BA, Scott SM, Williams HL et al. Effects of gepirone, an aryl-piperazine anxiolytic drug, on aggressive behavior and brain monoaminergic neurotransmission. Naunyn-Schmiedebergs Arch Pharmacol. 1987; 335:454-64. https://pubmed.ncbi.nlm.nih.gov/2439924
162. Pellow S, File SE. Is tofisopam an atypical anxiolytic? Neurosci Biobehav Rev. 1986; 10:221-7.
163. Skolnick P, Paul SM, Weissman BA. Preclinical pharmacology of buspirone hydrochloride. Pharmacotherapy. 1984; 4:308-14. https://pubmed.ncbi.nlm.nih.gov/6151169
164. McMillen BA, McDonald CC. Selective effects of buspirone and molindone on dopamine metabolism and function in the striatum and frontal cortex of the rat. Neuropharmacology. 1983; 22:273-8. https://pubmed.ncbi.nlm.nih.gov/6133232
165. Hoehn-Saric R. Neurotransmitters in anxiety. Arch Gen Psychiatry. 1982; 39:735-42. https://pubmed.ncbi.nlm.nih.gov/6124225
166. Allen LE, Ferguson HC, Cox RH Jr. Pharmacologic effects of MJ 9022-1, a potential tranquilizing agent. Arzneimittelforschung. 1974; 24:917-22. https://pubmed.ncbi.nlm.nih.gov/4212236
167. Dommisse CS, DeVane CL. Buspirone: a new type of anxiolytic. Drug Intell Clin Pharm. 1985; 19:624-8. https://pubmed.ncbi.nlm.nih.gov/2864225
168. Rickels K. Antianxiety therapy: potential value of long-term treatment. J Clin Psychiatry. 1987; 48(Suppl):7-11. https://pubmed.ncbi.nlm.nih.gov/2891688
169. Liegghio NE, Yeragani VK, Moore NC. Buspirone-induced jitteriness in three patients with panic disorder and one patient with generalized anxiety disorder. J Clin Psychiatry. 1988; 49:165-6. https://pubmed.ncbi.nlm.nih.gov/3356675
170. Sills MA, Wolfe BB, Frazer A. Determination of selective and nonselective compounds for the 5-HT1A and 5-HT1B receptor subtypes in rat frontal cortex. J Pharmacol Exp Ther. 1984; 231:480-7. https://pubmed.ncbi.nlm.nih.gov/6502510
171. Lerman JA, Kaitin KI, Dement WC et al. The effects of buspirone on sleep in the rat. Neurosci Lett. 1986; 72:64-8. https://pubmed.ncbi.nlm.nih.gov/2880319
172. Wander TJ, Nelson A, Okazaki H et al. Antagonism by antidepressants of serotonin S1 and S2 receptors of normal human brain in vitro. Eur J Pharmacol. 1986; 132:115-21. https://pubmed.ncbi.nlm.nih.gov/3816971
173. Louilot A, Le Moal M, Simon H. A study of the effects of buspirone, BMY 13805, and 1-PP on dopaminergic metabolism in the nucleus accumbens using in vivo voltammetry in freely moving rats. Life Sci. 1986; 39:685-92. https://pubmed.ncbi.nlm.nih.gov/2874469
174. Hanson RC, Braselton JP, Hayes DC et al. Cardiovascular and renal effects of buspirone in several animal models. Gen Pharmacol. 1986; 17:267-74. https://pubmed.ncbi.nlm.nih.gov/2873078
175. Liegghio NE, Yeragani VK. Buspirone-induced hypomania: a case report. J Clin Psychopharmacol. 1988; 8:226-7. https://pubmed.ncbi.nlm.nih.gov/3379150
176. Shimizu H, Hirose A, Tatsuno T et al. Pharmacological properties of SM-3997: a new anxioselective anxiolytic candidate. Jpn J Pharmacol. 1987; 45:493-500. https://pubmed.ncbi.nlm.nih.gov/2895201
177. Witkin JM Barrett JE. Interaction of buspirone and dopaminergic agents on punished behavior of pigeons. Pharmacol Biochem Behav. 1986; 24:751-6. https://pubmed.ncbi.nlm.nih.gov/2871566
178. Sanghera MK, German DC. The effects of benzodiazepine and non-benzodiazepine anxiolytics on locus coeruleus unit activity. J Neural Transm. 1983; 57:267-79. https://pubmed.ncbi.nlm.nih.gov/6140300
179. Saller CF, Salama AI. 3-Methoxytyramine accumulation: effects of typical neuroleptics and various atypical compounds. Naunyn-Schmiedebergs Arch Pharmacol. 1986; 334:125-32. https://pubmed.ncbi.nlm.nih.gov/2878374
180. Louilot A, Le Moal M, Simon H. Presynaptic control of dopamine metabolism in the nucleus accumbens: lack of effect of buspirone as demonstrated using in vivo voltammetry. Life Sci. 1987; 40:2017-24. https://pubmed.ncbi.nlm.nih.gov/3573992
181. Ortiz A, Pohl R, Gershon S. Azaspirodecanediones in generalized anxiety disorder: buspirone. J Affect Disord. 1987; 13:131-43. https://pubmed.ncbi.nlm.nih.gov/2960708
182. Rimele TJ, Henry DE, Lee DKH et al. Tissue-dependent alpha adrenoceptor activity of buspirone and related compounds. J Pharmacol Exp Ther. 1987; 241:771-8. https://pubmed.ncbi.nlm.nih.gov/3037069
183. Bianchi G, Garattini S. Blockade of α2-adrenoceptors by 1-(2-pyrimidinyl)-piperazine (PmP) in vivo and its relation to the activity of buspirone. Eur J Pharmacol. 1988; 147:343-50. https://pubmed.ncbi.nlm.nih.gov/2897918
184. Rickels K, Schweizer E, Csanalosi I et al. Long-term treatment of anxiety and risk of withdrawal: prospective comparison of clorazepate and buspirone. Arch Gen Psychiatry. 1988; 45:444-50. https://pubmed.ncbi.nlm.nih.gov/2895993
185. Evens RP (Mead Johnson Pharmaceuticals, Evansville, IN): Personal communication; 1988 July 20.
186. Reviewers’ comments (personal observations); 1988 July.
187. McMillen BA, DaVanzo EA, Scott SM et al. N-alkyl-substituted aryl-piperazine drugs: relationship between affinity for serotonin receptors and inhibition of aggression. Drug Dev Res. 1988; 12:53-62.
188. Rapoport DM, Greenberg HE, Goldring RM. A placebo controlled comparison of the effects of buspirone and diazepam on control of breathing. (unpublished observations)
189. McGowan G, Napoliello M, Alms D. Buspirone for the management of anxiety in patients with concomitant medical conditions: a retrospective preliminary evaluation. Curr Ther Res. 1988; 43:481-6.
190. Andrade R, Nicoll RA. Novel anxiolytics discriminate between postsynaptic serotonin receptors mediating different physiologic responses on single neurons of the rat hippocampus. Naunyn-Scmiedebergs Arch Pharmacol. 1987; 336:5-10.
191. Rakel R, Alms D, Boehm C et al. The safety of long-term buspirone in treatment of chronic anxiety—a multicenter international study. (unpublished observations)
192. Robinson DS, Roberts DL, Shrotriya RC et al. Non-benzodiazepine anxiolytics, including buspirone. Paper presented at NCDEU annual meeting. Key Biscayne, FL: 1988 May 31-June 3.
193. Robinson D, Napoliello MJ, Schenck J. A final report of the safety of buspirone as an anxiolytic drug in elderly versus young patients. (unpublished observations)
194. Levine S, Napoliello MJ. A study of buspirone coprescribed with histamine H2-receptor antagonists in anxious patients. Int Clin Psychopharmacol. 1988; 3:83-6. https://pubmed.ncbi.nlm.nih.gov/3356893
195. Ritchie EC, Bridenbaugh RH, Jabbari B. Acute generalized myoclonus following buspirone administration. J Clin Psychiatry. 1988; 49:242-3. https://pubmed.ncbi.nlm.nih.gov/3379031
196. Parke-Davis. Nardil (phenelzine sulfate) prescribing information. In: Huff BB, ed. Physicians’ desk reference. 43rd ed. Oradell, NJ: Medical Economics Company Inc; 1989:1571-2.
197. Smith Kline & French Laboratories. Parnate (tranylcypromine sulfate) prescribing information. In: Huff BB, ed. Physicians’ desk reference. 42nd ed. Oradell, NJ: Medical Economics Company Inc; 1988(Suppl A):A47-9.
198. Bodkin JA, Teicher MH. Fluoxetine may antagonize the anxiolytic action of buspirone. J Clin Psychopharmacol. 1989; 9:150. https://pubmed.ncbi.nlm.nih.gov/2786010
199. Alessi N, Bos T. Buspirone augmentation of fluoxetine in a depressed child with obsessive-compulsive disorder. Am J Psychiatry. 1991; 148:1605-6. https://pubmed.ncbi.nlm.nih.gov/1928487
200. Markovitz PJ, Stagno SJ, Calabrese JR. Buspirone augmentation of fluoxetine in obsessive-compulsive disorder. Am J Psychiatry. 1990; 147:790-800.
201. Sporer KA. The serotonin syndrome. Implicated drugs, pathophysiology and management. Drug Saf. 1995; 13:94-104. https://pubmed.ncbi.nlm.nih.gov/7576268
202. Beasley CM, Masica DN, Heiligenstein JH et al. Possible monoamine oxidase inhibitor–serotonin uptake inhibitor interaction: fluoxetine clinical data and preclinical findings. J Clin Psychopharmacol. 1993; 13:312-20. https://pubmed.ncbi.nlm.nih.gov/8227489
203. Bristol-Myers Squibb, Princeton, NJ: Personal communication.
204. Mahmood I, Sahajwalla C. Clinical pharmacokinetics and pharmacodynamics of buspirone, an anxiolytic drug. Clin Pharmacokinet. 1999; 36:277-87. https://pubmed.ncbi.nlm.nih.gov/10320950
205. Barbhaiya RH, Shukla UA, Pfeffer M et al. Disposition kinetics of buspirone in patients with renal or hepatic impairment after administration of single and multiple doses. Eur J Clin Pharmacol. 1994; 46:41-7. https://pubmed.ncbi.nlm.nih.gov/7911763
206. Lamberg TS, Kivistö KT, Neuvonen PJ. Concentrations and effects of buspirone are considerably reduced by rifampicin. Br J Clin Pharmacol. 1998; 45:381-5. https://pubmed.ncbi.nlm.nih.gov/9578186 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1873961/
More about buspirone
- Check interactions
- Compare alternatives
- Pricing & coupons
- Reviews (1,359)
- Drug images
- Side effects
- Dosage information
- Patient tips
- During pregnancy
- Support group
- Drug class: miscellaneous anxiolytics, sedatives and hypnotics
- Breastfeeding
- En español