Glyburide (Monograph)
Brand names: DiaBeta, Glynase
Drug class: Sulfonylureas
VA class: HS502
Chemical name: 1-[[p-[2-(5-Chloro-o-anisamido)ethyl]phenyl]sulfonyl]-3-cyclohexylurea
Molecular formula: C23H28ClN3O5S
CAS number: 10238-21-8
Introduction
Antidiabetic agent; sulfonylurea.1 2 3 4
Uses for Glyburide
Type 2 Diabetes Mellitus
Used alone or in fixed combination with metformin as an adjunct to diet and exercise to improve glycemic control in patients with type 2 diabetes mellitus.1 2 3 4 49 50 51 52 53 54 55 56 57 58 59 60 158
Used in combination with one or more other oral antidiabetic agents or insulin as an adjunct to diet and exercise in patients who do not achieve adequate glycemic control with diet, exercise, and oral antidiabetic agent monotherapy.1 124 158 162 165 166 168 169 170 195 196 197 198 199 200 201 202 203
Current guidelines for the treatment of type 2 diabetes mellitus generally recommend metformin as first-line therapy in addition to lifestyle modifications in patients with recent-onset type 2 diabetes mellitus or mild hyperglycemia because of its well-established safety and efficacy (i.e., beneficial effects on glycosylated hemoglobin [hemoglobin A1c; HbA1c], weight, and cardiovascular mortality).698 704 705
In patients with metformin contraindications or intolerance (e.g., risk of lactic acidosis, GI intolerance) or in selected other patients, some experts suggest that initial therapy with a drug from another class of antidiabetic agents (e.g., a glucagon-like peptide-1 [GLP-1] receptor agonist, sodium-glucose cotransporter 2 [SGLT2] inhibitor, dipeptidyl peptidase-4 [DPP-4] inhibitor, sulfonylurea, thiazolidinedione, basal insulin) may be acceptable based on patient factors.698 704
May need to initiate therapy with 2 agents (e.g., metformin plus another drug) in patients with high initial HbA1c (>7.5% or ≥1.5% above target).698 704 In such patients with metformin intolerance, some experts suggest initiation of therapy with 2 drugs from other antidiabetic drug classes with complementary mechanisms of action.698 704
Consider early initiation of combination therapy for the treatment of type 2 diabetes mellitus to extend the time to treatment failure and more rapidly attain glycemic goals.704
For patients with inadequate glycemic control on metformin monotherapy, consider patient comorbidities (e.g., atherosclerotic cardiovascular disease [ASCVD], established kidney disease, heart failure), hypoglycemia risk, impact on weight, cost, risk of adverse effects, and patient preferences when selecting additional antidiabetic agents for combination therapy.698 699 704 705 706
Consider early introduction of insulin for severe hyperglycemia (e.g., blood glucose of ≥300 mg/dL or HbA1c >9–10%), especially if accompanied by catabolic manifestations (e.g., weight loss, hypertriglyceridemia, ketosis) or symptoms of hyperglycemia.698 704
Glyburide Dosage and Administration
General
-
Adjust dosage according to patient’s tolerance and fasting blood glucose determinations.1 2 Monitor HbA1c to determine minimum effective dosage and to detect primary or secondary failure.1 2
-
During transfer from insulin therapy, patients should test their blood for glucose 2 60 106 and their urine for glucose and/or ketones at least 3 times daily.1 2 124 Persistent ketonuria with glycosuria, 1 2 ketosis, 86 and/or inadequate lowering or persistent elevation of blood glucose concentration 86 during transfer from insulin indicate that the patient requires insulin therapy.1 2 86
-
Micronized formulations arenotbioequivalent with conventional formulations; retitrate dosage when transferring patients from micronized to conventional formulations, or vice versa.124
Administration
Oral Administration
Administer conventional or micronized formulations once daily with breakfast or first main meal.1 2 3 124 May administer in 2 divided doses in some patients (i.e., those receiving >10 mg daily [as conventional formulations]1 2 or >6 mg daily [as micronized glyburide]).124
Administer fixed combination with metformin hydrochloride once or twice daily with meals.158
Administer glyburide at least 4 hours prior to colesevelam when drugs given concomitantly.1 2 124 (See Specific Drugs under Interactions.)
Dosage
Adults
Type 2 Diabetes Mellitus
Initial Dosage in Previously Untreated Patients
OralConventional formulations: Initially, 2.5–5 mg daily.1 2
Micronized formulations: Initially, 1.5 –3 mg daily.124
Fixed combination with metformin hydrochloride: Initially, 1.25 mg of glyburide and 250 mg of metformin hydrochloride once or twice daily.158
Initial Dosage in Patients Transferred from Other Oral Antidiabetic Agents
OralConventional formulations: Initially, 2.5–5 mg daily.1 2
Micronized formulations: Initially, 1.5–3 mg daily.124
May discontinue most other oral hypoglycemic agents (except chlorpropamide [no longer commercially available in the US]) immediately.1 2 3 96 124 During transfer from chlorpropamide (a drug with a long elimination half-life), monitor closely for hypoglycemia during initial 2 weeks of transition period.1 2 124
Fixed combination with metformin hydrochloride: Initially, glyburide 2.5 mg/metformin hydrochloride 500 mg or glyburide 5 mg/metformin hydrochloride 500 mg twice daily in patients not adequately controlled on monotherapy with glyburide (or another sulfonylurea) or metformin.158 For patients previously receiving combination therapy with glyburide (or another sulfonylurea) and metformin, initial dosage should not exceed previous individual dosages of glyburide (or equivalent dosage of another sulfonylurea) and metformin.158
Initial Dosage in Patients Transferred from Insulin
OralConventional formulations: Initially, 2.5–5 mg once daily (if insulin dosage is <20 units daily) or 5 mg once daily (if insulin dosage is 20–40 units daily); may discontinue insulin immediately.1 2 96 If insulin dosage is >40 units daily, reduce insulin dosage by 50% and initiate glyburide at 5 mg daily; withdraw insulin gradually and increase glyburide dosage in increments of 1.25–2.5 mg daily every 2–10 days.1 2 124
Micronized formulations: Initially, 1.5–3 mg once daily (if insulin dosage is <20 units daily) or 3 mg once daily (if insulin dosage is 20–40 units daily); may discontinue insulin immediately.124 If insulin dosage is >40 units daily, reduce insulin dosage by 50% and initiate glyburide at 3 mg daily; withdraw insulin gradually and increase glyburide dosage in increments of 0.75–1.5 mg daily every 2–10 days.
Titration and Maintenance Dosage
OralConventional formulations: Increase dosage in increments of ≤2.5 mg daily at weekly intervals.1 2 Usual maintenance dosage is 1.25–20 mg daily.1 2 96
Micronized formulations: Increase dosage in increments of ≤1.5 mg daily at weekly intervals.124 Usual maintenance dosage is 0.75–12 mg daily.124
Fixed combination with metformin hydrochloride: Titrate dosage gradually based on glycemic control and tolerability up to a maximum daily dosage of 20 mg of glyburide and 2 g of metformin hydrochloride.158
Prescribing Limits
Adults
Conventional formulations: Maximum 20 mg daily.1 2 96
Micronized formulations: Maximum 12 mg daily.124
Fixed combination with metformin hydrochloride: Maximum 20 mg of glyburide and 2 g of metformin hydrochloride daily.158
Special Populations
Hepatic Impairment
Conventional formulations: Initially, 1.25 mg daily.1 2
Micronized formulations: Initially, 0.75 mg daily.124
Renal Impairment
Conventional formulations: Initially, 1.25 mg daily.1 2
Micronized formulations: Initially, 0.75 mg daily.124
Geriatric Patients
Conventional formulations: Initially, 1.25 mg daily1 2
Micronized formulations: Initially, 0.75 mg daily.124
Fixed combination with metformin hydrochloride: Use a lower dosage when initiating or increasing therapy.158
Other Populations
Cautious dosing recommended in debilitated or malnourished patients or in patients with adrenal or pituitary insufficiency.1 2 124 158
Conventional formulations: Initially, 1.25 mg daily1 2
Micronized formulations: Initially, 0.75 mg daily.124
Cautions for Glyburide
Contraindications
Warnings/Precautions
Warnings
Cardiovascular Effects
Increased cardiovascular mortality reported with some sulfonylurea antidiabetic agents (i.e., tolbutamide, phenformin).1 2 63 However, the American Diabetes Association considers the benefits of intensive glycemic control with insulin or sulfonylureas to outweigh the risks overall.128 130 131 138 144 234
Sensitivity Reactions
Dermatologic and Sensitivity Reactions
Possible allergic skin reaction (e.g., pruritus, erythema, urticaria, morbilliform or maculopapular eruptions).1 2 124 Discontinue the drug if allergic reaction persists.1 2 124
Angioedema, arthralgia, myalgia, and vasculitis reported.1 2 124
General Precautions
Hypoglycemia
Severe,1 2 67 68 69 74 105 124 occasionally fatal,67 68 74 105 hypoglycemia reported. Debilitated, malnourished, or geriatric patients and patients with renal or hepatic impairment or adrenal or pituitary insufficiency may be particularly susceptible.1 2 105 124 158 Strenuous exercise, alcohol ingestion, insufficient caloric intake, or use in combination with other antidiabetic agents may increase risk.1 2 96 105 124 Hypoglycemia may be difficult to recognize in geriatric patients or in those receiving β-adrenergic blocking agents.1 2 105 124 158 (See Interactions.)
Loss of Blood Glucose Control
Possible loss of glycemic control during periods of stress (e.g., fever, trauma, infection, surgery).1 2
Temporary discontinuance of glyburide and administration of insulin may be required.1 2
Hematologic Effects
Hemolytic anemia may develop in patients with glucose 6-phosphate dehydrogenase (G6PD) deficiency who receive sulfonylureas; consider a nonsulfonylurea antidiabetic agent in patients with G6PD deficiency.1 2 124 158
Macrovascular Outcomes
Manufacturer states that no clinical studies have conclusively established macrovascular risk reduction with glyburide or any other antidiabetic drug.1 2 124
Use of Fixed Combinations
When used in fixed combination with metformin hydrochloride, consider the cautions, precautions, and contraindications associated with metformin.
Specific Populations
Pregnancy
Category B.1
Many experts recommend that insulin be used during pregnancy.1 2 106
Lactation
Not known whether glyburide is distributed into milk; discontinue nursing or the drug.1 2
Pediatric Use
Safety and efficacy not established.1 2
Geriatric Use
Increased risk of hypoglycemia; hypoglycemia may be difficult to recognize.1 105 158 Cautious dosing recommended.1 2 124 158 See Geriatric Patients under Dosage and Administration.
Hepatic Impairment
Increased risk of hypoglycemia.1 2 96 105 106 Cautious dosing recommended.1 2 124 158 (See Hepatic Impairment under Dosage and Administration.)
Renal Impairment
Increased risk of hypoglycemia.1 2 96 105 106 Cautious dosing recommended.1 2 124 158 (See Renal Impairment under Dosage and Administration.)
Common Adverse Effects
With conventional and micronized formulations, nausea, epigastric fullness, heartburn.1 2 3 62
With fixed-combination glyburide/metformin hydrochloride preparation, diarrhea, headache, nausea/vomiting, abdominal pain, dizziness.158
Drug Interactions
When using fixed-combination preparation containing metformin hydrochloride, also consider the drug interactions associated with metformin.158
Drugs Affecting Hepatic Microsomal Enzymes
Glyburide principally metabolized by CYP2C9.2 Consider potential interactions with CYP2C9 inducers or inhibitors.2
Protein-bound Drugs
Potential pharmacokinetic interaction and possible potentiation of hypoglycemic effects when used concomitantly with other highly protein-bound drugs.1 2 37 38 39 40 60 62 85
Observe for adverse effects when glyburide therapy is initiated or discontinued and vice versa.1 2
Specific Drugs
Drug |
Interaction |
Comments |
---|---|---|
ACE inhibitors |
Potentiation of hypoglycemic effects2 |
Observe carefully for hypoglycemic effects or loss of glycemic control when an ACE inhibitor is initiated or discontinued2 |
Alcohol |
||
Anticoagulants, oral (e.g., coumarins) |
Possible displacement from plasma proteins and potentiation of hypoglycemic effects1 2 37 38 39 40 62 85 |
Observe carefully for adverse effects when oral anticoagulants are initiated or discontinued1 2 |
Antifungal agents, azole (i.e., fluconazole, miconazole) |
Increased glyburide concentrations; possible hypoglycemia1 124 158 210 211 |
|
β-Adrenergic blocking agents |
Impaired glucose tolerance60 62 85 or potentiation of hypoglycemic effects60 62 85 |
If concomitant therapy is necessary, a β1-selective adrenergic blocking agent may be preferred62 |
Bosentan |
Increased risk of elevated serum aminotransferase concentrations233 |
Concomitant use contraindicated233 |
Calcium-channel blocking agents |
Observe carefully for loss of glycemic control or for hypoglycemia when calcium-channel blocking agents are initiated or discontinued1 124 158 |
|
Chloramphenicol |
Observe carefully for hypoglycemic effects or loss of glycemic control when chloramphenicol is initiated or discontinued1 124 158 |
|
Clarithromycin |
Potentiation of hypoglycemic effects2 |
Observe carefully for hypoglycemic effects or loss of glycemic control when clarithromycin is initiated or discontinued2 |
Colesevelam |
Reductions in glyburide AUC and peak plasma concentration with concomitant administration1 2 124 |
|
Contraceptives, oral |
Observe carefully for loss of glycemic control or for hypoglycemia when oral contraceptives are initiated or discontinued1 124 158 |
|
Corticosteroids |
Observe carefully for loss of glycemic control or for hypoglycemia when corticosteroids are initiated or discontinued1 124 158 |
|
Disopyramide |
Potentiation of hypoglycemic effects2 |
Observe carefully for hypoglycemic effects or loss of glycemic control when disopyramide is initiated or discontinued2 |
Diuretics (e.g., thiazides) |
Observe carefully for loss of glycemic control or for hypoglycemia when diuretics are initiated or discontinued1 124 158 |
|
Estrogens |
Observe carefully for loss of glycemic control or for hypoglycemia when estrogens are initiated or discontinued1 124 158 |
|
Fluoroquinolone anti-infectives (e.g., ciprofloxacin) |
Observe carefully for hypoglycemic effects or loss of glycemic control when fluoroquinolone anti-infectives are initiated or discontinued1 124 158 |
|
Fluoxetine |
Potentiation of hypoglycemic effects2 |
Observe carefully for hypoglycemic effects or loss of glycemic control when fluoxetine is initiated or discontinued2 |
Hydantoins |
Possible displacement from plasma protein and potentiation of hypoglycemic effects37 38 39 40 62 85 |
|
Isoniazid |
Observe carefully for loss of glycemic control or for hypoglycemia when isoniazid is initiated or discontinued1 124 158 |
|
MAO inhibitors |
Observe closely for hypoglycemic effects of loss of glycemic control when MAO inhibitors are initiated or discontinued1 124 158 |
|
Metformin |
Highly variable decreases in AUC and peak plasma concentrations of glyburide (certain preparations) with concomitant single-dose metformin in patients with type 2 diabetes mellitus; no changes in metformin pharmacokinetics or pharmacodynamics1 124 |
|
Niacin |
Observe carefully for loss of glycemic control or for hypoglycemia when niacin is initiated or discontinued1 124 158 |
|
NSAIAs |
Possible displacement from plasma proteins and potentiation of hypoglycemic effects1 2 37 38 39 40 62 85 |
Observe carefully for hypoglycemia or loss of glycemic control when NSAIAs are initiated or discontinued1 2 |
Phenothiazines |
Observe carefully for loss of glycemic control or for hypoglycemia when phenothiazines are initiated or discontinued1 124 158 |
|
Phenylbutazone (no longer commercially available in the US) |
Potentiation of hypoglycemic effects84 |
Monitor blood glucose control; adjust glyburide dosage when phenylbutazone is initiated or discontinued85 |
Phenytoin |
Observe carefully for loss of glycemic control or for hypoglycemia when phenytoin is initiated or discontinued1 124 158 |
|
Probenecid |
Observe closely for hypoglycemic effects or loss of glycemic control when probenecid is initiated or discontinued1 124 158 |
|
Rifampin |
Observe carefully for loss of glycemic control or for hypoglycemia when rifampin is initiated or discontinued1 124 158 |
|
Sulfonamides |
Possible displacement from plasma proteins and potentiation of hypoglycemic effects1 2 37 38 39 40 62 85 |
Observe carefully for adverse effects when sulfonamides are initiated or discontinued1 2 124 |
Sympathomimetic agents |
Observe carefully for loss of glycemic control or for hypoglycemia when sympathomimetic agents are initiated or discontinued1 124 158 |
|
Thyroid agents |
Observe carefully for loss of glycemic control or for hypoglycemia when thyroid agents are initiated or discontinued1 124 158 |
|
Topiramate |
Reductions in AUC and peak plasma concentrations of glyburide and active metabolites 4-trans-hydroxyglyburide (M1) and 3-cishydroxyglyburide (M2)1 124 Topiramate pharmacokinetics unaffected |
Glyburide Pharmacokinetics
Absorption
Bioavailability
Almost completely absorbed following oral administration.4 23 24 94
Conventional and micronized glyburide preparations not bioequivalent.124 (See General under Dosage and Administration.)
Onset
Hypoglycemic action generally begins within 45–60 minutes and is maximal within 1.5–3 hours.4 27 32 49
Duration
In single-dose studies in fasting healthy individuals, the degree and duration of blood-glucose lowering is proportional to glyburide dose and AUC.1 2 124
In nonfasting diabetic patients, the hypoglycemic action may persist for up to 24 hours.1 2 33 124
Food
Food does not affect rate or extent of absorption.27 28 94
Special Populations
In patients with renal1 2 27 124 or hepatic1 2 124 impairment, serum concentrations may be increased.
Distribution
Extent
Distributed in substantial amounts into bile.1 2 3 25 26 36 124
Appears to cross the placenta.81 101 Not known if distributed into breast milk.1 2 124
Plasma Protein Binding
>97% (for major metabolite 4-trans-hydroxyglyburide).25
Elimination
Metabolism
Appears to be completely metabolized, 25 26 31 36 probably in the liver.31
Elimination Route
Excreted as metabolites in urine and feces in approximately equal proportions.1 2 23 25 26 30 31 47 124
Minimally removed by hemodialysis.42
Half-life
1.4–1.8 hours (for glyburide)24 27 29 41 97 or approximately 10 hours (for glyburide and metabolites).25 30 31 32 124
Special Populations
In patients with severe renal impairment, clearance may be decreased and half-life prolonged.42 43
Stability
Storage
Oral
Conventional or Micronized Preparations
Generally, well-closed containers at 20–25°C (may be exposed to 15–30°C); consult specific labeling.1 2 124
Glyburide/Metformin Hydrochloride Fixed-combination Preparations
Light-resistant containers up to 25°C.158
Actions
-
Stimulates secretion of endogenous insulin from beta cells of the pancreas.1 2 3 4 8 9 10 11 12 Lowers blood glucose concentration in diabetic and nondiabetic individuals.3 4 8 9 10 11
-
During prolonged administration, extrapancreatic effects (e.g., enhanced peripheral sensitivity to insulin, reduction of basal hepatic glucose production) contribute to the hypoglycemic action.4 8 9 10 11 12 15 16 17 110 111 112 121
Advice to Patients
-
Importance of regular clinical and laboratory evaluations, including urine and/or fasting blood glucose determinations.1 2
-
Risks of hypoglycemia, the symptoms and treatment of hypoglycemic reactions, and conditions that predispose to the development of hypoglycemic reactions.1
-
Understanding of primary and secondary failure to oral sulfonylurea antidiabetic agents.1
-
Importance of informing clinicians of existing or contemplated concomitant therapy, including prescription and OTC drugs, as well as any concomitant illnesses.1
-
Importance of women informing clinicians if they are or plan to become pregnant or plan to breast-feed.1
-
Importance of informing patients of other important precautionary information. (See Cautions.)
Preparations
Excipients in commercially available drug preparations may have clinically important effects in some individuals; consult specific product labeling for details.
Please refer to the ASHP Drug Shortages Resource Center for information on shortages of one or more of these preparations.
* available from one or more manufacturer, distributor, and/or repackager by generic (nonproprietary) name
Routes |
Dosage Forms |
Strengths |
Brand Names |
Manufacturer |
---|---|---|---|---|
Oral |
Tablets |
1.25 mg* |
DiaBeta (scored) |
Sanofi-Aventis |
glyBURIDE Tablets |
||||
2.5 mg* |
DiaBeta (scored) |
Sanofi-Aventis |
||
glyBURIDE Tablets |
||||
5 mg* |
DiaBeta (scored) |
Sanofi-Aventis |
||
glyBURIDE Tablets |
||||
Tablets (micronized) |
1.5 mg* |
glyBURIDE Micronized Tablets |
||
Glynase PresTab (scored) |
Pfizer |
|||
3 mg* |
glyBURIDE Micronized Tablets |
|||
Glynase PresTab (scored) |
Pfizer |
|||
4.5 mg* |
glyBURIDE Micronized Tablets |
|||
6 mg* |
glyBURIDE Micronized Tablets |
|||
Glynase PresTab (scored) |
Pfizer |
* available from one or more manufacturer, distributor, and/or repackager by generic (nonproprietary) name
Routes |
Dosage Forms |
Strengths |
Brand Names |
Manufacturer |
---|---|---|---|---|
Oral |
Tablets, film-coated |
1.25 mg with Metformin Hydrochloride 250 mg* |
Glyburide with Metformin Hydrochloride Tablets |
|
2.5 mg with Metformin Hydrochloride 500 mg* |
Glyburide with Metformin Hydrochloride Tablets |
|||
5 mg with Metformin Hydrochloride 500 mg* |
Glyburide with Metformin Hydrochloride Tablets |
AHFS DI Essentials™. © Copyright 2025, Selected Revisions June 21, 2021. American Society of Health-System Pharmacists, Inc., 4500 East-West Highway, Suite 900, Bethesda, Maryland 20814.
References
1. Cadilla Pharmaceuticals Ltd. Glyburide tablets prescribing information. District - Ahmedabad, Gujarat, India; 2020 Jan.
2. Sanofi-Aventis. Diaβeta (glyburide tablets) prescribing information. Bridgewater, NJ; 2017 Jan.
3. Anon. Glibenclamide: a review. Drugs. 1971; 1:116-40. https://pubmed.ncbi.nlm.nih.gov/5004340
4. Jackson JE, Bressler R. Clinical pharmacology of sulphonylurea hypoglycaemic agents: part 1. Drugs. 1981; 22:211-45. https://pubmed.ncbi.nlm.nih.gov/7021124
5. Vomel VW, Sauer W. Zur Frage einer antimikrobiellen Wirkung des neuen oralen Antidiabeticums HB 419. (German; with English abstract) Arzneim-Forsch. 1969; 19:1491-4.
6. The British pharmacopoeia. London: Her Majesty’s Stationery Office; 1980:210.
7. Hadju VP, Kohler KF, Schmidt FH et al. Physikalisch-chemische und analytische Unter suchungen an HB 419. (German; with English abstract) Arzneim-Forsch. 1969; 19:1381-6.
8. Skillman TG, Feldman JM. The pharmacology of sulfonylureas. Am J Med. 1981; 70:361-72. https://pubmed.ncbi.nlm.nih.gov/6781341
9. Kolterman OG, Gray RS, Shapiro G et al. The acute and chronic effects of sulfonylurea therapy in type II diabetic subjects. Diabetes. 1984; 33:346-54. https://pubmed.ncbi.nlm.nih.gov/6423429
10. Duckworth WC, Solomon SS, Kitabchi AE. Effect of chronic sulfonylurea therapy on plasma insulin and proinsulin levels. J Clin Endocrinol Metab. 1972; 35:585-91. https://pubmed.ncbi.nlm.nih.gov/5052977
11. Feldman JM, Lebovitz HE. Endocrine and metabolic effects of glybenclamide: evidence for an extrapancreatic mechanism of action. Diabetes. 1971; 20:745-55.
12. DeFronzo RA, Ferrannini E, Koivisto V. New concepts in the pathogenesis and treatment of noninsulin-dependent diabetes mellitus. Am J Med. 1983; 74(Suppl 1A):52-81. https://pubmed.ncbi.nlm.nih.gov/6337486
13. Lockwood DH, Maloff BL, Nowak SM et al. Extrapancreatic effects of sulfonylureas: potentiation of insulin action through post-binding mechanisms. Am J Med. 1983; 74(Suppl 1A):102-8. https://pubmed.ncbi.nlm.nih.gov/6401922
14. Brogden RN, Heel RC, Pakes GE et al. Glipizide: a review of its pharmacological properties and therapeutic use. Drugs. 1979; 18:329-53. https://pubmed.ncbi.nlm.nih.gov/389600
15. Kolterman OG, Prince MJ, Olefsky JM. Insulin resistance in noninsulin-dependent diabetes mellitus: impact of sulfonylurea agents in vivo and in vitro. Am J Med. 1983; 74(Suppl 1A):82-101. https://pubmed.ncbi.nlm.nih.gov/6401923
16. Beck-Nielsen H, Pedersen O, Lindskov HO. Increased insulin sensitivity and cellular insulin binding in obese diabetics following treatment with glibenclamide. Acta Endocrinol. 1979; 90:451-62. https://pubmed.ncbi.nlm.nih.gov/106617
17. Hjollund E, Richelsen B, Beck-Nielsen H et al. The effect of glibenclamide on insulin receptors in normal man: comparative studies of insulin binding to monocytes and erythrocytes. J Clin Endocrinol Metab. 1983; 57:1257-62. https://pubmed.ncbi.nlm.nih.gov/6415086
18. Moses AM, Howanitz J, Miller M. Diuretic action of three sulfonylurea drugs. Ann Intern Med. 1973; 78:541-4. https://pubmed.ncbi.nlm.nih.gov/4632790
19. Rado JP, Borbély L, Szende L et al. Investigation of the diuretic effect of glibenclamide in healthy subjects and in patients with pituitary and nephrogenic diabetes insipidus. Horm Metab Res. 1974; 6:289-92. https://pubmed.ncbi.nlm.nih.gov/4213198
20. Rado JP, Szende L. Inhibition of clofibrate-induced antidiuresis by glybenclamide in patients with pituitary diabetes insipidus. J Clin Pharmacol. 1974; 14:290-5. https://pubmed.ncbi.nlm.nih.gov/4208361
21. Klaff LJ, Kernoff L, Vinik AI et al. Sulfonylureas and platelet function. Am J Med. 1981; 70:627-30. https://pubmed.ncbi.nlm.nih.gov/6782875
22. Blumenthal SA. Sulfonylureas and platelet function. Am J Med. 1983; 74:795. https://pubmed.ncbi.nlm.nih.gov/6404166
23. Rupp W, Christ O, Fulberth W. Untersuchungen zur Bioavailability von Glibenclamid. (German; with English abstract) Arzneim-Forsch. 1972; 22:471-3.
24. Ings RMJ, Lawrence JR, McDonald A et al. Glibenclamide pharmacokinetics in healthy volunteers: evidence for zero-order drug absorption. Br J Clin Pharmacol. 1982; 13:264-5P.
25. Christ OE, Heptner W, Rupp W. Investigations on absorption, excretion and metabolism in man after administration of14C-labelled HB 419. Horm Metab Res Suppl Ser. 1969; 1:51-4.
26. Rupp VW, Christ O, Heptner W. Resorption, Ausscheidung and Metabolismus nach intravenoser und oraler Gabe von HB 419-14C an Menschen. (German; with English abstract) Arzneim-Forsch. 1969; 19:1428-34.
27. Sartor G, Melander A, Scherstén B et al. Serum glibenclamide in diabetic patients, and influence of food on the kinetics and effects of glibenclamide. Diabetologia. 1980; 18:17-22. https://pubmed.ncbi.nlm.nih.gov/6767639
28. Sartor G, Lundquist I, Melander A et al. Improved effect of glibenclamide on administration before breakfast. Eur J Clin Pharmacol. 1982; 21:403-8. https://pubmed.ncbi.nlm.nih.gov/6804245
29. Sartor G, Melander A, Scherstén B et al. Comparative single-dose kinetics and effects of four sulfonylureas in healthy volunteers. Acta Med Scand. 1980; 208:301-7. https://pubmed.ncbi.nlm.nih.gov/6778079
30. Fucella LM, Tamassia V, Valzelli G. Metabolism and kinetics of the hypoglycemic agent glipizide in man—comparison with glibenclamide. J Clin Pharmacol. 1973; 13:68-75.
31. Balant L, Fabre J, Zahnd GR. Comparison of the pharmacokinetics of glipizide and glibenclamide in man. Eur J Clin Pharmacol. 1975; 8:63-9. https://pubmed.ncbi.nlm.nih.gov/823030
32. Ko H, Royer ME, Molony BA. Relationships between circulating glyburide/metabolite concentrations, serum glucose lowering, and dose of glyburide in man. In: Rifkin H, ed. Micronase (glyburide): pharmacological and clinical evaluation. Amsterdam: Excerpta Medica; 1975:20-30.
33. Groop L, Harno K. Diurnal pattern of plasma insulin and blood glucose during glibenclamide and glipizide therapy in elderly diabetics. Acta Endocrinol Suppl. 1980; 239:44-52.
34. Balant L, Zahnd GR, Weber F et al. Behaviour of glibenclamide on repeated administration to diabetic patients. Eur J Clin Pharmacol. 1977; 11:19-25. https://pubmed.ncbi.nlm.nih.gov/401739
35. Schmidt FH, Hrstka VE. Radio-immunoassay of glibenclamide: minimum effective dose levels and pharmacodynamics. XIIe Congrès International de Thérapeutique, Genève, 1973.
36. Kaiser DG, Forist AA. A review of glyburide metabolism in man and laboratory animals. In: Rifkin H, ed. Micronase (glyburide): pharmacological and clinical evaluation. Amsterdam: Excerpta Medica; 1975:31-43.
37. Crooks MJ, Brown KF. The binding of sulphonylureas to serum albumin. J Pharm Pharmacol. 1974; 26:304-11. https://pubmed.ncbi.nlm.nih.gov/4153105
38. Hsu P, Ma JKH, Luzzi LA. Interactions of sulfonylureas with plasma proteins. J Pharm Sci. 1974; 63:570-3. https://pubmed.ncbi.nlm.nih.gov/4208196
39. Brown KF, Crooks MJ. Binding of sulfonylureas to serum albumin. II. The influence of salt and buffer compositions on tolbutamide and glyburide. Can J Pharm Sci. 1974; 9:75-7.
40. Brown KF, Crooks MJ. Displacement of tolbutamide, glibenclamide and chlorpropramide from serum albumin by anionic drugs. Biochem Pharmacol. 1976; 25:1175-8. https://pubmed.ncbi.nlm.nih.gov/820348
41. Morrison PJ, Rogers HJ, Spector RG et al. Effect of pirprofen on glibenclamide kinetics and response. Br J Clin Pharmacol. 1982; 14:123-6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1427576/ https://pubmed.ncbi.nlm.nih.gov/6809024
42. Raehl CL, Goersch WA, Craig WA et al. The pharmacokinetics of14C-glyburide (Micronase) in patients with reduced renal function. In: Official Program and Abstracts of Papers presented before the APhA Academy of Pharmaceutical Sciences. Washington, DC: American Pharmaceutical Association; 1983; 13(2):205. Abstract.
43. Balant L, Zahnd G, Petitpierre B et al. Influence of renal failure on the pharmacokinetics and hypoglycemic effect of sulfonylureas. Diabetologia. 1973; 9:59.
44. Balant L, Fabre J, Loutan L et al. Does 4-trans-hydroxy-glibenclamide show hypoglycemic activity? Arzneim-Forsch. 1979; 29:162-3.
45. Rado JP, Borbély L. Inhibition of the antidiuretic effect of 1-deamino-8d-arginine vasopressin (DDAVP) by glibenclamide in water-loaded healthy subjects. Endokrinologie. 1975; 66:88-93. https://pubmed.ncbi.nlm.nih.gov/817889
46. Rado JP, Szende L, Marosi J. Influence of glyburide on the antidiuretic response induced by 1-deamino-8-d-arginine vasopressin (DDAVP) in patients with pituitary diabetes insipidus. Metabolism. 1974; 23:1057-63. https://pubmed.ncbi.nlm.nih.gov/4214480
47. Anderson J, Stephenson RJ, Tomlinson RWS et al. Studies with14C-labelled glibenclamide. Postguard Med J. 1970; 46(Dec Suppl):42-5.
48. Larner J. Mediators of postreceptor action of insulin. Am J Med. 1983; 74(Suppl 1A):38-51. https://pubmed.ncbi.nlm.nih.gov/6297300
49. Davidson M, Lewis AAG, de Mowbray RR. Metabolic and clinical effects of glibenclamide. Lancet. 1970; 1:57-61. https://pubmed.ncbi.nlm.nih.gov/4188623
50. Johnson BF, Bhatia CK, Rzeszotarski WJ et al. Preliminary clinical evaluation of glybenclamide in treatment of diabetes mellitus. Diabetes. 1970; 19:579-84. https://pubmed.ncbi.nlm.nih.gov/4915447
51. Clarke BF, Campbell IW. Long-term comparative trial of glibenclamide and chlorpropamide in diet-failed, maturity-onset diabetics. Lancet. 1975; 1:246-8. https://pubmed.ncbi.nlm.nih.gov/8667857
52. Hamblin JJ, Ismay G, Good MS et al. A comparative study of glibenclamide and chlorpropamide (preliminary report). Postgrad Med J. 1970; 46(Dec Suppl):92-4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2467001/ https://pubmed.ncbi.nlm.nih.gov/5416512
53. Mogensen EF, Worm J, Mikkelsen BO. Clinical comparison between glibornuride (Glutril) and glibenclamide in maturity-onset diabetes: a controlled double-blind trial. Curr Ther Res. 1976; 19:599-64.
54. Blohmé G, Waldenstrom J. Glibenclamide and glipizide in maturity onset diabetes. Acta Med Scand. 1979; 206:263-7. https://pubmed.ncbi.nlm.nih.gov/116480
55. Frederiksen PK, Mogensen EF. A clinical comparison between glipizide (Glibenese) and glibenclamide (Daonil) in the treatment of maturity onset diabetes: a controlled doudle-blind cross-over study. Curr Ther Res. 1982; 32:1-7.
56. Allen GS. The comparative effectiveness of glyburide and tolazamide in patients with mild diabetes. In: Rifkin H, ed. Micronase (glyburide): pharmacological and clinical evaluation. Amsterdam: Excerpta Medica; 1975:150-6.
57. Bryan JB, Inchaustegui HJ. Clinical impressions of Micronase (glyburide) in a private practice. In: Rifkin H, ed. Micronase (glyburide): pharmacological and clinical evaluation. Amsterdam: Excerpta Medica; 1975:225-34.
58. Murphey AT, Peskin H. Glyburide compared to previous therapy or tolbutamide. In: Rifkin H, ed. Micronase (glyburide): pharmacological and clinical evaluation. Amsterdam: Excerpta Medica; 1975:204-10.
59. National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes. 1979; 28:1039-57. https://pubmed.ncbi.nlm.nih.gov/510803
60. Koda-Kimble MA. Diabetes mellitus. In: Koda-Kimble MA, Young LY, eds. Applied therapeutics: the clinical use of drugs. 5th ed. Vancouver, WA: Applied Therapeutics, Inc.; 1992:72–1-53.
61. Scientific Advisory Panel of the Executive Committee, American Diabetes Association. Policy statement: the UGDP controversy. Diabetes. 1979; 28:168-70.
62. Jackson JE, Bressler R. Clinical pharmacology of sulphonylurea hypoglycaemic agents: part 2. Drugs. 1981; 22:295-320. https://pubmed.ncbi.nlm.nih.gov/7030708
63. Food and Drug Administration. Labeling for oral hypoglycemic drugs of the sulfonylurea class. [Docket No. 75N-0062] Fed Regist. 1984; 49:14303-31.
64. Clarke BF, Campbell IW, Ewing DJ et al. Generalized hypersenstivity reaction and visceral arteritis with fatal outcome during glibenclamide therapy. Diabetes. 1974; 23:739-42. https://pubmed.ncbi.nlm.nih.gov/4213123
65. Wongpaitoon V, Mills PR, Russell RI et al. Intrahepatic cholestasis and cutaneous bullae associated with glibenclamide therapy. Postgrad Med J. 1981; 57:244-6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2425002/ https://pubmed.ncbi.nlm.nih.gov/6794018
66. Krans HMJ. Insulin, glucagon and oral hypoglycaemic drugs. In: Dukes MNG, ed. Side effects of drugs. Annual 2. New York: Elsevier/North Holland Inc; 1978:345.
67. Seltzer HS. Severe drug-induced hypoglycemia: a review. Compr Ther. 1979; 5(4):21-9. https://pubmed.ncbi.nlm.nih.gov/445986
68. Gottesburen H, Gerdes H, Littman KP et al. Severe hypoglycemia after glibenclamide. Lancet. 1970; 2:576.
69. Howard FM. Hypoglycemia in diabetics treated with Micronase (glyburide). In: Rifkin H, ed. Micronase (glyburide): pharmacological and clinical evaluation. Amsterdam: Excerpta Medica: 1975:164-71.
70. Krans HMJ. Insulin, glucagon and oral hypoglycaemic drugs. In: Dukes MNG, ed. Side effects of drugs. Annual 1. New York: Elsevier/North Holland Inc; 1977:319.
71. Sillence DO, Court JM. Glibenclamide-induced hypoglycaemia. Br Med J. 1975; 3:490-1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1674276/ https://pubmed.ncbi.nlm.nih.gov/808247
72. Kullavanijaya P. Recovery from overdose with glibenclamide. Br Med J. 1970; 4:53-4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820565/ https://pubmed.ncbi.nlm.nih.gov/5470446
73. Krans HMJ. Insulin, glucagon and oral hypoglycaemic drugs. In: Dukes MNG, ed. Side effects of drugs. Annual 3. New York: Elsevier/North Holland Inc; 1979:347.
74. Krans HMJ. Insulin, glucagon and oral hypoglycaemic drugs. In: Dukes MNG, ed. Side effects of drugs. Annual 4. New York: Elsevier/North Holland Inc; 1980:303.
75. Krans HMJ. Insulin, glucagon and oral hypoglycaemic drugs. In: Dukes MNG, ed. Side effects of drugs. Annual 6. New York: Elsevier/North Holland Inc.; 1982:370.
76. Krans HMJ. Insulin, glucagon and oral hypoglycaemic drugs. In: Dukes MNG, ed. Side effects of drugs. Annual 7. New York: Elsevier/North Holland Inc.; 1983:409.
77. Pannekoek JH. Insulin, glucagon and oral hypoglycaemic drugs. In: Dukes MNG, ed. Meyler’s side effects of drugs. 8th ed. Amsterdam: Excerpta Medica; 1975:914-5.
78. Sketris I, Wheeler D, York S. Hypoglycemic coma induced by inadvertent administration of glyburide. Drug Intell Clin Pharm. 1984; 18:142-3. https://pubmed.ncbi.nlm.nih.gov/6421558
79. Walfish PG, Kashyap RP, Greenstein S. Sulfonylurea-induced factitious hypoglycemia in a nondiabetic nurse. Can Med Assoc J. 1975; 112:71-2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1956029/ https://pubmed.ncbi.nlm.nih.gov/803250
80. Shaw KM, Bulpitt CJ, Bloom A. Side effects of therapy in diabetes evaluated by a self-administered questionnaire. J Chron Dis. 1977; 30:39-48. https://pubmed.ncbi.nlm.nih.gov/401821
81. Coetzee EJ, Jackson WPU. Pregnancy in established non-insulin-dependent diabetics: a five-and-a-half year study at Groote Schuur Hospital. S Afr Med J. 1980; 58:795-802. https://pubmed.ncbi.nlm.nih.gov/6777880
82. Kannisto H, Neuvonen PJ. Adsorption of sulfonylureas onto activated charcoal in vitro. J Pharm Sci. 1984; 73:253-6. https://pubmed.ncbi.nlm.nih.gov/6707896
83. Neuvonen PJ, Karkkainen S. Effects of charcoal, sodium bicarbonate, and ammonium chloride on chlorpropamide kinetics. Clin Pharmacol Ther. 1983; 33:386-93. https://pubmed.ncbi.nlm.nih.gov/6297841
84. Shulz E, Koch K, Schmidt FH. Ursachen der Potenzierung der hypoglykamischen Wirkung von Sulfonylharstoff-Derviaten durch Medikamente. II. Pharmakokinetik und Metabolismus von Glibenclamide (HB 419) in Gegenwart von Phenylbutazon. (German; with English abstract) Eur J Clin Pharmacol. 1971; 4:32-7.
85. Hansten PD. Drug interactions. 4th ed. Philadelphia: Lea & Febiger; 1979:14, 93-109.
86. The Upjohn Company. Orinase prescribing information. In: Huff BB, ed. Physicians’ desk reference. 38th ed. Oradell, NJ: Medical Economics Company Inc.; 1984:2041-3.
87. Wardle EN, Richardson GO. Alcohol and glibenclamide. Br Med J. 1971; 3:309. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1799107/
88. Zaman R, Kendall MJ, Biggs PI. The effect of acebutolol and propranolol on the hypoglycaemic action of glibenclamide. Br J Clin Pharmacol. 1982; 13:507-12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1402050/ https://pubmed.ncbi.nlm.nih.gov/6802160
89. Hausmann L, Goebel KM. Atenolol in orally treated diabetic patients. Drugs. 1983; 25(Suppl 2):71-3.
90. De Marinis L, Barbarino A. Calcium antagonists and hormone release. I. Effects of verapamil on insulin release in normal subjects and patients with islet-cell tumor. Metabolism. 1980; 29:599-604. https://pubmed.ncbi.nlm.nih.gov/6247604
91. O’sullivan DJ, Cashman WF. Blood glucose variations and clinical experience with glibenclamide in diabetes mellitus. Br Med J. 1970; 2:572-4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1700211/ https://pubmed.ncbi.nlm.nih.gov/5526612
92. Molony BA, Crim JA, Hearron AE Jr. Micronase (glyburide): a comparison of single and divided daily dose treatment schedules. In: Rifkin H, ed. Micronase (glyburide): pharmacological and clinical evaluation. Amsterdam: Excerpta Medica; 1975:248-53.
93. Owens DR, Wragg KG, Shetty KT et al. Glibenclamide, acute-long-term response in m.o. diabetics. Horm Metab Res. 1979; 11:411-2. https://pubmed.ncbi.nlm.nih.gov/112018
94. The Upjohn Company. Pharmacokinetic profile: Micronase tablets (glyburide). Kalamazoo, MI; 1983 Oct.
95. Huupponen R, Viikari J, Saarimaa H. Chlorpropamide and glibenclamide serum concentrations in hospitalized patients. Ann Clin Res. 1982; 14:119-22. https://pubmed.ncbi.nlm.nih.gov/6814340
96. The Upjohn Company. Therapeutic profile: Micronase tablets (glyburide). Kalamazoo, MI; 1984 May.
97. Rogers HJ, Spector RG, Morrison PJ et al. Pharmacokinetics of intravenous glibenclamide investigated by a high performance liquid chromatographic assay. Diabetologia. 1982; 23:37-40. https://pubmed.ncbi.nlm.nih.gov/6811355
98. Fabre J, Balant L, Loutan L et al. Hypoglycemic activity of the main metabolite of glibenclamide: influence of renal insufficiency. Kidney Int. 1978; 13:435.
99. Loutan L, Samimi H, Balant L et al. Metabolites of hypoglycemic sulfonylureas in renal insufficiency. Experiences with glibenclamide. (German) Schweiz Med Wochenschr. 1978; 108:1782-6.
100. Gurwich EL (The Upjohn Company, Kalamazoo, MI): Personal communication; 1984 Jun 25.
101. Roney JV (Hoechst-Roussel Pharmaceuticals Inc., Somerville, NJ): Personal communication; 1984 Jun 18.
102. Raehl CL (University of Wisconsin School of Pharmacy, Madison, WI): Personal communication; 1984 Jun 28.
103. Lebovitz HE. Clinical utility of oral hypoglycemic agents in the management of patients with noninsulin-dependent diabetes mellitus. Am J Med. 1983; 75(Suppl 5B):94-9. https://pubmed.ncbi.nlm.nih.gov/6369972
104. Adetuyibi A, Ogundipe OO. A comparative trial of glipizide, glibenclamide and chlorpropamide in the management of maturity-onset diabetes mellitus in Nigerians. Curr Ther Res. 1977; 21:485-90.
105. Asplund K, Wiholm BE, Lithner F. Glibenclamide-associated hypoglycemia: a report on 57 cases. Diabetologia. 1983; 24:412-7. https://pubmed.ncbi.nlm.nih.gov/6411511
106. Reviewers’ comments (personal observations); 1984 Jun.
107. Camerini-Davalos RA, Velasco C, Glasser M et al. Drug-induced reversal of early diabetic microangiopathy. N Engl J Med. 1983; 309:1551-6. https://pubmed.ncbi.nlm.nih.gov/6656850
109. Kritz H, Najemnik C, Irsigler K. Sulfinpyrazone and glibenclamide study of interaction in diabetics of type II. Wien Med Wochenschr. 1983; 133:237-43. https://pubmed.ncbi.nlm.nih.gov/6408808
110. Best JD, Judzewitsch RG, Pfeifer MA et al. The effect of chronic sulfonylurea therapy on hepatic glucose production in non-insulin-dependent diabetes. Diabetes. 1982; 31:333-8. https://pubmed.ncbi.nlm.nih.gov/6759249
111. Pfeifer MA, Halter JB, Judzewitsch RG et al. Acute and chronic effects of sulfonylurea drugs on pancreatic islet function in man. Diabetes Care. 1984; 7(Suppl 1):25-34. https://pubmed.ncbi.nlm.nih.gov/6376026
112. DeFronzo RA, Simonson DC. Oral sulfonylurea agents suppress hepatic glucose production in non-insulin-dependent diabetic individuals. Diabetes Care. 1984; 7(Suppl 1):72-80. https://pubmed.ncbi.nlm.nih.gov/6428844
113. Skyler JS. Non-insulin-dependent diabetes mellitus: a clinical strategy. Diabetes Care. 1984; 7(Suppl 1):118-29. https://pubmed.ncbi.nlm.nih.gov/6376024
114. Asmal AC, Marble A. Oral hypoglycaemic agents: an update. Drugs. 1984; 28:62-78. https://pubmed.ncbi.nlm.nih.gov/6378583
115. Holmes B, Heel RC, Brogden RN et al. Gliclazide: a preliminary review of its pharmacodynamic properties and therapeutic efficacy in diabetes mellitus. Drugs. 1984; 27:301-27. https://pubmed.ncbi.nlm.nih.gov/6373223
116. Lotz N, Lacher F, Bachmann W. Combination of sulfonylureas (SU) and insulin (I) in the treatment of type-II-diabetes with “secondary failure” of SU-therapy (DSF). Diabetes. 1984; 33(Suppl 1):24A.
117. Simonson DC, Castellino P, Delprato S. Effect of glyburide on glucose control and metabolism in insulin treated diabetics. Diabetes. 1984; 33(Suppl 1):38A.
118. Rost CR, Brown JL. Combined insulin-sulfonylurea therapy in noninsulin-dependent diabetes mellitus (NIDDM). Diabetes. 1984; 33(Suppl 1):87A.
119. Groop L, Harno K, Nikkila EA et al. The combination of insulin and sulfonylurea (glibenclamide) in the treatment of non-insulin dependent diabetes poorly controlled with insulin alone: evaluation of its metabolic effects. Acta Endocrinol Suppl. 1983; 257:20.
120. Bachmann W, Sieger C, Haslbeck M et al. Combination of insulin and glibenclamide (gl) in the treatment of adult-onset diabetes (Type 2). Diabetologia. 1981; 21:245.
121. Simonson DC, Ferrannini E, Bevilacqua S et al. Mechanism of improvement in glucose metabolism after chronic glyburide therapy. Diabetes. 1984; 33:838-45. https://pubmed.ncbi.nlm.nih.gov/6432610
122. Sonksen PH, Lowy C, Perkins JR et al. Hormonal and metabolic effects of chlorpropamide, glibenclamide and placebo in a cross-over study in diabetics not controlled by diet alone. Diabetologia. 1981; 20:22-30. https://pubmed.ncbi.nlm.nih.gov/6781962
124. Pharmacia & Upjohn. Glynase PresTab (micronized glyburide) tablets prescribing information. Kalamazoo, MI; 2017 Aug.
127. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998; 352:837-53. https://pubmed.ncbi.nlm.nih.gov/9742976
128. American Diabetes Association. Implications of the United Kingdom Prospective Diabetes Study. Diabetes Care. 1999; 22(Suppl 1):S27-31.
129. Matthews DR, Cull CA, Stratton RR et al. UKPDS 26: sulphonylurea failure in non-insulin-dependent diabetic patients over 6 years. Diabet Med. 1998; 15:297-303. https://pubmed.ncbi.nlm.nih.gov/9585394
130. Genuth P. United Kingdom prospective diabetes study results are in. J Fam Pract. 1998; 47:(Suppl 5):S27.
131. Bretzel RG, Voit K, Schatz H et al. The United Kingdom Prospective Diabetes Study (UKPDS): implications for the pharmacotherapy of type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 1998; 106:369-72. https://pubmed.ncbi.nlm.nih.gov/9831300
132. Schmitt JK, Moore JR. Hypertension secondary to chlorpropamide with amelioration by changing to insulin. Am J Hypertens. 1993; 6:317-9. https://pubmed.ncbi.nlm.nih.gov/8507452
133. Genuth S, Brownless MA, Kuller LH et al. Consensus development conference on insulin resistance: Novermber 5-6 1997. Diabetes Care. 1998; 21:310-4. https://pubmed.ncbi.nlm.nih.gov/9540000
134. Henry RR. Glucose control and insulin resistance in non-insulin-dependent diabetes mellitus. Ann Intern Med. 1996; 124:97-103. https://pubmed.ncbi.nlm.nih.gov/8554221
135. Lebovitz HE. Stepwise and combination drug therapy for the treatment of NIDDM. Diabetes Care. 1994; 17:1542-4. https://pubmed.ncbi.nlm.nih.gov/7882832
136. Nathan DM. Some answers, more controversy, from UKDS. Lancet. 1998; 352:832-3. https://pubmed.ncbi.nlm.nih.gov/9742972
137. Reviewers’ comments (personal observations) on metformin.
138. American Diabetes Association. Standards of medical care for patients with diabetes mellitus. Diabetes Care. 2002; 25(Suppl 1):S33-49.
139. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329:977-86. https://pubmed.ncbi.nlm.nih.gov/8366922
140. Klein R, Klein BEK, Moss SE et al. Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. JAMA. 1988; 260:2864-71. https://pubmed.ncbi.nlm.nih.gov/3184351
141. American Diabetes Association. Implications of the diabetes control and complications trial. Diabetes Care. 1996; 19:50-2S.
142. Ohkubo Y, Kishikawa H, Araki E et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus; a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995; 28:103-17. https://pubmed.ncbi.nlm.nih.gov/7587918
143. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metfromin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998; 352:854-65. https://pubmed.ncbi.nlm.nih.gov/9742977
144. American Diabetes Association. The United Kingdom Prosepective Diabetes Study (UKPDS) for type 2 diabetes: what you need to know about the results of a long-term study. Washington, DC; September 15, 1998. From American Diabetes Association web site. http://www.diabetes.org
145. Davis TM. United Kingdom Prospective Diabetes Study: the end of the beginning? Med J Aust. 1998; 169:511-2.
146. Watkins PJ. UKPDS: a message of hope and a need for change. Diabet Med. 1998; 15:895-6. https://pubmed.ncbi.nlm.nih.gov/9827842
147. Turner RC, Cull CA, Frighi V et al. Glycemic control with diet, sulfonlyurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirements for multiple therapies (UKPDS 49). JAMA. 1999; 281:2005-12. https://pubmed.ncbi.nlm.nih.gov/10359389
148. August K, Brooks L (California Department of Health and Human Services). State health director warns consumers about prescription drugs in herbal products. Rockville, MD; 2000 Feb 15. News release No. 09-00. News release from FDA web site. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm171209.htm
149. American Diabetes Association. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2000; 23(Suppl 1):S4-19.
150. DeFronzo RA. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988; 37:667-87. https://pubmed.ncbi.nlm.nih.gov/3289989
151. Polonsky KS, Sturis J, Bell GI. Non-insulin-dependent diabetes mellitus-a genetically programmed failure of the beta cell to compensate for insulin resistance. N Engl J Med. 1996; 334:777-83. https://pubmed.ncbi.nlm.nih.gov/8592553
152. Swislocki A. Insulin resistance and hypertension. Am J Med Sci. 1990; 300:104-15. https://pubmed.ncbi.nlm.nih.gov/2206054
153. United Kingdom Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998; 317:703-13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC28659/ https://pubmed.ncbi.nlm.nih.gov/9732337
154. UK Prospective Diabetes Study (UKPDS) Group. Efficacy of atenolol and captopril in reducing risk of macrovascular complications in type 2 diabetes mellitus: UKPDS 39. BMJ. 1998; 317:713-20. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC28660/ https://pubmed.ncbi.nlm.nih.gov/9732338
155. Davis TM. United Kingdom Prospective Diabetes Study: the end of the beginning? Med J Aust. 1998; 169:511-2.
156. Haffner SM, Hanefeld M, Fischer S et al. Glibenclamide, but not acarbose, increase leptin concentrations parallel to changes in insulin in subjects with NIDDM. Diabetes Care. 1997; 20: 1430-4. https://pubmed.ncbi.nlm.nih.gov/9283792
157. Shi H, Moustaid-Moussa N, Wilkison WO et al. Role of the sulfonylurea receptor in regulating human adipocyte metabolism. FASEB J. 1999; 13:1833-8. https://pubmed.ncbi.nlm.nih.gov/10506587
158. Actavis Pharma. Glyburide and metformin hydrochloride tablets prescribing information. Parsippany, NJ; 2020 May.
159. Cheskin LJ, Bartlett SJ, Zayas R et al. Prescription medications: a modifiable contributor to obesity. South Med J. 1999; 92:898-904. https://pubmed.ncbi.nlm.nih.gov/10498166
160. American Diabetes Association. Type 2 diabetes in children and adolescents. Pediatrics. 2000; 105:671-80. https://pubmed.ncbi.nlm.nih.gov/10699131
161. American Diabetes Association. Office guide to diagnosis and classification of diabetes mellitus and other categories of glucose intolerance. Diabetes Care. 1995; 18(Suppl 1):4.
162. Williams G. Management of non-insulin-dependent diabetes mellitus. Lancet. 1994; 343:95-100. https://pubmed.ncbi.nlm.nih.gov/7903785
163. Genuth S. Exogenous insulin administration and cardiovascular risk in non-insulin-dependent and insulin-dependent diabetes mellitus. Ann Intern Med. 1996;124(1 Part 2):104-9.
164. USP DI: drug information for the health care professional. 20th ed. Englewood, CO: Micromedex, Inc; 2000;1:306.
165. Chow CC, Sorensen JP, Tsang LWW et al. Comparison of insulin with or without continuation of oral hypoglycemic agents in the treatment of secondary failure in NIDDM patients. Diabetes Care. 1995; 18:307-14. https://pubmed.ncbi.nlm.nih.gov/7555472
166. Zimmerman B, Espenshade J, Fujimoto W et al. The pharmacological treatment of hyperglycemia in NIDDM. Diabetes Care. 1996; 19:1510-18.
167. Landstedt-Hallin L, Bolinder J, Adamson U et al. Comparison of bedtime NPH or preprandial regular insulin combined with glibenclamide in secondary sulfonylurea failure. Diabetes Care. 1995; 18:1183-6. https://pubmed.ncbi.nlm.nih.gov/7587856
168. Expert Committee of the Canadian Diabetes Advisory Board. Clinical practice guidelines for treatment of diabetes mellitus. Can Med Assoc J. 1992; 147:697-712.
169. Raskin P. Combination therapy in NIDDM N Engl J Med. 1992; 327:1453-4. Editorial.
170. Pugh JA, Ramirez G, Wagner ML et al. Is combination sulfonylurea and insulin therapy useful in NIDDM patients? A metaanalysis. Diabetes Care. 1992; 15:953-9. https://pubmed.ncbi.nlm.nih.gov/1387073
171. Buse J. Combining insulin and oral agents. Am J Med. 2000; 108(Suppl 6A):23S-32S. https://pubmed.ncbi.nlm.nih.gov/10764847
172. Johnson JL, Wolf SL, Kabadi UM. Efficacy of insulin and sulfonylurea combination therapy in type II diabetes: a meta-analysis of the randomized placebo-controlled trials. Arch Intern Med. 1996; 156:259-64. https://pubmed.ncbi.nlm.nih.gov/8572835
173. Yki-Jarvinen H, Dressler A, Ziemen M et al. Less nocturnal hypoglycemia and better post-dinner glucose control with bedtime insulin glargine compared with bedtime HPH insulin during insulin combination therapy in type 2 diabetes. Diabetes Care. 2000; 23:1130-6 (IDIS 451244) https://pubmed.ncbi.nlm.nih.gov/10937510
174. Trischitta V, Italia S, Mazzarino S et al. Comparison of combined therapies in treatment of secon dary failure to glyburide. Diabetes Care. 1992; 15:539-42. https://pubmed.ncbi.nlm.nih.gov/1499473
175. Florence JA, Yeager BF. Treatment of type 2 diabetes mellitus. Am Fam Physician. 1999; 59:2835-44. https://pubmed.ncbi.nlm.nih.gov/10348076
176. Bastyr EJ, Johnson ME, Trautman ME et al. Insulin lispro in the treatment of patients with type 2 diabetes mellitus after oral agent failure. Clin Ther. 1999; 21:1703-4. https://pubmed.ncbi.nlm.nih.gov/10566566
177. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med. 1999; 131:281-303. https://pubmed.ncbi.nlm.nih.gov/10454950
178. Krentz AJ, Ferner RE, Bailey CJ. Comparative tolerability profiles of oral antidiabetic agents. Drug Safety. 1994; 11:223-41. https://pubmed.ncbi.nlm.nih.gov/7848543
179. Anon. Diabetes mellitus. NIH Cons Dev Conf Statement. 1986; 6:1-7.
180. Blake GH. Control of type II diabetes: reaping the rewards of exercise and weight loss. Postgrad Med. 1992; 92:129-32. https://pubmed.ncbi.nlm.nih.gov/1437899
181. Kerr CP. Improving outcomes in diabetes: a review of the outpatient care of NIDDM patients. J Fam Pract. 1995; 40:63-75. https://pubmed.ncbi.nlm.nih.gov/7807040
182. Bailey C, Turner R. Metformin. N Engl J Med. 1996; 334:574-9. https://pubmed.ncbi.nlm.nih.gov/8569826
183. Turner R, Cull C, Holman R et al. United Kingdom Prospective Diabetes Study 17: a 9-year update of a randomized, controlled trial on the effect of improved metabolic control on complications in non-insulin-dependent diabetes mellitus. Ann Intern Med. 1996; 124(1 Pt 2):136-45. https://pubmed.ncbi.nlm.nih.gov/8554206
184. Zoetica. Glycron (glyburide) micronized tablets prescribing information. Princeton, NJ; 1999 Apr.
185. American Diabetes Association. Gestational diabetes mellitus. Diabetes Care. 2002; 25(Suppl 1):S94-6.
186. Langer O, Conway DL, Berkus MD et al. A comparison of glyburide and insulin in women with gestational diabetes mellitus. N Engl J Med. 2000; 343:1134-8. https://pubmed.ncbi.nlm.nih.gov/11036118
187. Albengres E, Le Louet H, Tillement JP. Systemic antifungal agents. Drug interactions of clinical significance. Drug Saf. 1998; 18:83-97. https://pubmed.ncbi.nlm.nih.gov/9512916
188. Hermann LS, Scherstén B, Bitzén PO et al. Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. Diabetes Care. 1994; 17:1100-9. https://pubmed.ncbi.nlm.nih.gov/7821128
189. Hermann L. Biguanides and sulfonylureas as combination therapy in NIDDM. Diabetes Care. 1990; 13:37-41. https://pubmed.ncbi.nlm.nih.gov/2209342
193. United Kingdom prospective diabetes study group. United Kingdom prospective diabetes study (UKPDS) 16: overview of 6 years’ therapy of type II diabetes: a progressive disease. Diabetes. 1995; 44:1240-58.
194. Bristol-Myers Squibb, Princeton, NJ: personal communication on metformin.
195. Wolffenbuttel BHR, Gomist R, Squatrito S et al. Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in type 2 diabetic patients. Diabet Med. 2000; 17:40-7. https://pubmed.ncbi.nlm.nih.gov/10691158
196. Takeda Pharmaceuticals America. Actos (pioglitazone hydrochloride) tablets prescribing information. Lincolnshire, IL; 2002 July.
197. SmithKline Beecham. Avandia (rosiglitazone maleate) tablets prescribing information. Philadelphia, PA; 2002 May
198. Kipnes MS, Krosnick a, Rendell MS et al. Pioglitazone hydrochloride in combination with sulfonylurea therapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Am J Med. 2001; 111:10-7. https://pubmed.ncbi.nlm.nih.gov/11448655
199. Pfizer Inc. Glucotrol XL(glipizide) extended release tablets prescribing information. New York, NY; 2000 Oct.
200. Chiasson J, Josse R, Hunt J et al. The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus. Ann Intern Med. 1994; 121:929-935.
201. Coniff RF, Shapiro JA, Seaton TB et al. Multicenter, placebo-controlled trial comparing acarbose (BAY g 5421) with placebo, tolbutamide, and tolbutamide-plus-acarbose in non-insulin-dependent diabetes mellitus. Am J Med. 1995; 98:443-51. https://pubmed.ncbi.nlm.nih.gov/7733122
202. Calle-Pascual AL, Garcia-Honduvilla J, Martin-Alvarez PJ et al. Comparison between acarbose, metformin, and insulin treatment in type 2 diabetic patients with secondary failure to sulfonylurea treatment. Diabetes Metab. 1995; 21:256-60.
203. Klein W. Sulfonylurea-metformin-combination versus sulfonylurea-insulin-combination in secondary failures of sulfonylurea monotherapy. Diab Metab. 1991; 17(Suppl 1):235-40.
205. Hermann LS, Melander A. Biguanides: basic aspects and clinical use. In: Alberti KGMM, DeFronzo RA, Keen H et al, eds. International textbook of diabetes mellitus. New York: John Wiley & Sons; 1992; 773-95.
206. Moses R, Carter J, Slobodniuk R et al. Effect of repaglinide addition to metformin monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 1999; 22:119-24. https://pubmed.ncbi.nlm.nih.gov/10333912
207. Fonseca V,, Rosenstock J, Patwardhan R et al. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA. 2000; 283:1695-702. https://pubmed.ncbi.nlm.nih.gov/10755495
208. Bristol-Myers Squibb. Metaglip (glipizide and metformin hydrochloride) prescribing information. Princeton, NJ; 2002 Oct.
209. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA. 2002; 287:2563-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2622728/ https://pubmed.ncbi.nlm.nih.gov/12020338
210. Pfizer Inc. Glucotrol XL(glipizide) extended release tablets prescribing information. New York, NY; 2001 Apr.
211. Pfizer. Diflucan (fluconazole) tablets, for oral suspension, and injection prescribing information. New York, NY; 1998 Jun.
233. Actelion Pharmaceuticals US. Tracleer (bosentan) tablets prescribing information. South San Francisco, CA; 2011 Feb.
234. American Diabetes Association. Standards of medical care in diabetes--2009. Diabetes Care. 2009; 32 Suppl 1:S13-61.
698. Garber AJ, Handelsman Y, Grunberger G et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm 2020 executive summary. Endocr Pract. 2020; 26:107-139. https://pubmed.ncbi.nlm.nih.gov/32022600
699. Zelniker TA, Wiviott SD, Raz I et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation. 2019; 139:2022-2031. https://pubmed.ncbi.nlm.nih.gov/30786725
702. American Diabetes Association. 6. Glycemic targets: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2020; 43(Suppl 1):S66–S76.
704. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020; 43:S98-S110. https://pubmed.ncbi.nlm.nih.gov/31862752
705. American Diabetes Association. 10. Cardiovascular disease and risk management: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020; 43:S111-S134. https://pubmed.ncbi.nlm.nih.gov/31862753
706. American Diabetes Association. 11. Microvascular complications and foot care: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020; 43:S135-S151. https://pubmed.ncbi.nlm.nih.gov/31862754
a. Aventis Pharmaceuticals. Diaβeta (glyburide) prescribing information. Bridgewater, NJ; 2003 Feb
More about glyburide
- Check interactions
- Compare alternatives
- Pricing & coupons
- Reviews (9)
- Drug images
- Side effects
- Dosage information
- During pregnancy
- Drug class: sulfonylureas
- Breastfeeding