Skip to main content

Ephedrine/phenobarbital/theophylline and Alcohol/Food Interactions

There are 13 alcohol/food/lifestyle interactions with ephedrine / phenobarbital / theophylline.

Moderate

Theophylline Caffeine

Moderate Drug Interaction

MONITOR: Barbiturates may decrease serum levels and therapeutic effects of the methylxanthines. The mechanism is barbiturate induction of CYP450 3A4 and 1A2 hepatic metabolism of methylxanthines.

MANAGEMENT: Close observation for clinical and laboratory evidence of decreased methylxanthine effect is indicated if these drugs must be used together. Patients should be advised to notify their physician if they experience a worsening of their respiratory symptoms.

References (4)
  1. Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
  2. Bukowskyj M, Nakatsu K, Munt PW (1984) "Theophylline reassessed." Ann Intern Med, 101, p. 63-73
  3. Landay RA, Gonzalez MA, Taylor JC (1978) "Effect of phenobarbital on theophylline disposition." J Allergy Clin Immunol, 62, p. 27-9
  4. Dahlqvist R, Steiner E, Koike Y, von Bahr C, Lind M, Billing B (1989) "Induction of theophylline metabolism by pentobarbital." Ther Drug Monit, 11, p. 408-10
Moderate

Theophylline Caffeine

Moderate Drug Interaction

GENERALLY AVOID: Coadministration with caffeine may increase the serum concentrations of theophylline. The proposed mechanism involves competitive inhibition of theophylline metabolism via CYP450 1A2, as well as metabolic conversion of caffeine to theophylline in vivo and saturation of theophylline metabolism at higher serum concentrations. In six healthy male volunteers (all smokers), serum concentrations of theophylline (administered as aminophylline 400 mg single oral dose) were significantly higher following consumption of caffeine (2 to 7 cups of instant coffee over 24 hours, equivalent to approximately 120 to 630 mg of caffeine) than after caffeine deprivation for 48 hours. Caffeine consumption also increased the apparent elimination half-life of theophylline by an average of 32% and reduced its total body clearance by 23%. In another study, steady-state concentration and area under the concentration-time curve of theophylline (1200 mg intravenously over 24 hours) increased by 23% and 40%, respectively, in eight healthy volunteers following administration of caffeine (300 mg orally three times a day).

MANAGEMENT: Given the narrow therapeutic index of theophylline, patients should limit or avoid significant fluctuations in their intake of pharmacologic as well as dietary caffeine.

References (2)
  1. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  2. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
Moderate

Ephedrine Caffeine

Moderate Drug Interaction

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References (7)
  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
Minor

Theophylline Caffeine

Minor Drug Interaction

Ephedrine-methylxanthine combinations are used for the treatment of asthma but the efficacy of the combination has been questioned. This combination may lead to increased xanthine side effects. The mechanism is unknown, but may be related to synergistic pharmacologic effects. Patients using this combination should be closely monitored for side effects such as nausea, vomiting, tachycardia, nervousness, or insomnia. If side effects are noted, the dosage of the xanthine may need to be decreased.

References (5)
  1. Weinberger M, Bronsky E, Bensch GW, Bock GN, Yecies JJ (1975) "Interaction of ephedrine and theophylline." Clin Pharmacol Ther, 17, p. 585-92
  2. Sims JA, doPico GA, Reed CE (1978) "Bronchodilating effect of oral theophylline-ephedrine combination." J Allergy Clin Immunol, 62, p. 15-21
  3. Tinkelman DG, Avner SE (1977) "Ephedrine therapy in asthmatic children. Clinical tolerance and absence of side effects." JAMA, 237, p. 553-7
  4. Weinberger MM, Brousky EA (1974) "Evaluation of oral bronchodilator therapy in asthmatic children: bronchodilators in asthmatic children." J Pediatr, 84, p. 421-7
  5. Badiei B, Faciane J, Sly M (1975) "Effect of throphylline, ephedrine and theri combination upon exercise-induced airway obstruction." Ann Allergy, 35, p. 32-6
Major

Phenobarbital Alcohol (Ethanol)

Major Drug Interaction

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References (5)
  1. Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
  3. Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
  4. Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
  5. Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102
Moderate

Theophylline Alcohol (Ethanol)

Moderate Drug Interaction

MONITOR: Barbiturates may decrease serum levels and therapeutic effects of the methylxanthines. The mechanism is barbiturate induction of CYP450 3A4 and 1A2 hepatic metabolism of methylxanthines.

MANAGEMENT: Close observation for clinical and laboratory evidence of decreased methylxanthine effect is indicated if these drugs must be used together. Patients should be advised to notify their physician if they experience a worsening of their respiratory symptoms.

References (4)
  1. Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
  2. Bukowskyj M, Nakatsu K, Munt PW (1984) "Theophylline reassessed." Ann Intern Med, 101, p. 63-73
  3. Landay RA, Gonzalez MA, Taylor JC (1978) "Effect of phenobarbital on theophylline disposition." J Allergy Clin Immunol, 62, p. 27-9
  4. Dahlqvist R, Steiner E, Koike Y, von Bahr C, Lind M, Billing B (1989) "Induction of theophylline metabolism by pentobarbital." Ther Drug Monit, 11, p. 408-10
Minor

Theophylline Alcohol (Ethanol)

Minor Drug Interaction

Ephedrine-methylxanthine combinations are used for the treatment of asthma but the efficacy of the combination has been questioned. This combination may lead to increased xanthine side effects. The mechanism is unknown, but may be related to synergistic pharmacologic effects. Patients using this combination should be closely monitored for side effects such as nausea, vomiting, tachycardia, nervousness, or insomnia. If side effects are noted, the dosage of the xanthine may need to be decreased.

References (5)
  1. Weinberger M, Bronsky E, Bensch GW, Bock GN, Yecies JJ (1975) "Interaction of ephedrine and theophylline." Clin Pharmacol Ther, 17, p. 585-92
  2. Sims JA, doPico GA, Reed CE (1978) "Bronchodilating effect of oral theophylline-ephedrine combination." J Allergy Clin Immunol, 62, p. 15-21
  3. Tinkelman DG, Avner SE (1977) "Ephedrine therapy in asthmatic children. Clinical tolerance and absence of side effects." JAMA, 237, p. 553-7
  4. Weinberger MM, Brousky EA (1974) "Evaluation of oral bronchodilator therapy in asthmatic children: bronchodilators in asthmatic children." J Pediatr, 84, p. 421-7
  5. Badiei B, Faciane J, Sly M (1975) "Effect of throphylline, ephedrine and theri combination upon exercise-induced airway obstruction." Ann Allergy, 35, p. 32-6
Moderate

Theophylline Nicotine

Moderate Drug Interaction

MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.

MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.

References (4)
  1. (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
  2. jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
  3. Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
  4. Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Moderate

Theophylline Nicotine

Moderate Drug Interaction

MONITOR: Barbiturates may decrease serum levels and therapeutic effects of the methylxanthines. The mechanism is barbiturate induction of CYP450 3A4 and 1A2 hepatic metabolism of methylxanthines.

MANAGEMENT: Close observation for clinical and laboratory evidence of decreased methylxanthine effect is indicated if these drugs must be used together. Patients should be advised to notify their physician if they experience a worsening of their respiratory symptoms.

References (4)
  1. Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
  2. Bukowskyj M, Nakatsu K, Munt PW (1984) "Theophylline reassessed." Ann Intern Med, 101, p. 63-73
  3. Landay RA, Gonzalez MA, Taylor JC (1978) "Effect of phenobarbital on theophylline disposition." J Allergy Clin Immunol, 62, p. 27-9
  4. Dahlqvist R, Steiner E, Koike Y, von Bahr C, Lind M, Billing B (1989) "Induction of theophylline metabolism by pentobarbital." Ther Drug Monit, 11, p. 408-10
Minor

Theophylline Nicotine

Minor Drug Interaction

Ephedrine-methylxanthine combinations are used for the treatment of asthma but the efficacy of the combination has been questioned. This combination may lead to increased xanthine side effects. The mechanism is unknown, but may be related to synergistic pharmacologic effects. Patients using this combination should be closely monitored for side effects such as nausea, vomiting, tachycardia, nervousness, or insomnia. If side effects are noted, the dosage of the xanthine may need to be decreased.

References (5)
  1. Weinberger M, Bronsky E, Bensch GW, Bock GN, Yecies JJ (1975) "Interaction of ephedrine and theophylline." Clin Pharmacol Ther, 17, p. 585-92
  2. Sims JA, doPico GA, Reed CE (1978) "Bronchodilating effect of oral theophylline-ephedrine combination." J Allergy Clin Immunol, 62, p. 15-21
  3. Tinkelman DG, Avner SE (1977) "Ephedrine therapy in asthmatic children. Clinical tolerance and absence of side effects." JAMA, 237, p. 553-7
  4. Weinberger MM, Brousky EA (1974) "Evaluation of oral bronchodilator therapy in asthmatic children: bronchodilators in asthmatic children." J Pediatr, 84, p. 421-7
  5. Badiei B, Faciane J, Sly M (1975) "Effect of throphylline, ephedrine and theri combination upon exercise-induced airway obstruction." Ann Allergy, 35, p. 32-6
Moderate

Theophylline Food

Moderate Food Interaction

GENERALLY AVOID: Coadministration with caffeine may increase the serum concentrations of theophylline. The proposed mechanism involves competitive inhibition of theophylline metabolism via CYP450 1A2, as well as metabolic conversion of caffeine to theophylline in vivo and saturation of theophylline metabolism at higher serum concentrations. In six healthy male volunteers (all smokers), serum concentrations of theophylline (administered as aminophylline 400 mg single oral dose) were significantly higher following consumption of caffeine (2 to 7 cups of instant coffee over 24 hours, equivalent to approximately 120 to 630 mg of caffeine) than after caffeine deprivation for 48 hours. Caffeine consumption also increased the apparent elimination half-life of theophylline by an average of 32% and reduced its total body clearance by 23%. In another study, steady-state concentration and area under the concentration-time curve of theophylline (1200 mg intravenously over 24 hours) increased by 23% and 40%, respectively, in eight healthy volunteers following administration of caffeine (300 mg orally three times a day).

MANAGEMENT: Given the narrow therapeutic index of theophylline, patients should limit or avoid significant fluctuations in their intake of pharmacologic as well as dietary caffeine.

ADJUST DOSING INTERVAL: Administration of theophylline with continuous enteral nutrition may reduce the serum levels or the rate of absorption of theophylline. The mechanism has not been reported. In one case, theophylline levels decreased by 53% in a patient receiving continuous nasogastric tube feedings and occurred with both theophylline tablet and liquid formulations, but not with intravenous aminophylline.

MANAGEMENT: When administered to patients receiving continuous enteral nutrition , some experts recommend that the tube feeding should be interrupted for at least 1 hour before and 1 hour after the dose of theophylline is given; rapid-release formulations are preferable, and theophylline levels should be monitored.

References (3)
  1. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  2. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  3. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67

Switch to consumer interaction data

Major

Phenobarbital High Blood Pressure (Hypertension)

Major Potential Hazard, Moderate plausibility

barbiturates IV - cardiovascular

The intravenous administration of barbiturates may produce severe cardiovascular reactions such as bradycardia, hypertension, or vasodilation with fall in blood pressure, particularly during rapid infusion. Parenteral therapy with barbiturates should be administered cautiously in patients with hypertension, hypotension, or cardiac disease. The intravenous administration of barbiturates should be reserved for emergency treatment of acute seizures or for anesthesia.

References (5)
  1. (2001) "Product Information. Phenobarbital (phenobarbital)." Lilly, Eli and Company
  2. American Medical Association, Division of Drugs and Toxicology (1994) "Drug evaluations annual 1994." Chicago, IL: American Medical Association;
  3. (2001) "Product Information. Amytal Sodium (amobarbital)." Lilly, Eli and Company
  4. (2001) "Product Information. Nembutal Sodium (pentobarbital)." Abbott Pharmaceutical
  5. (2001) "Product Information. Seconal Sodium (secobarbital)." Lilly, Eli and Company
Moderate

Theophylline High Blood Pressure (Hypertension)

Moderate Potential Hazard, Moderate plausibility

methylxanthines - tachyarrhythmias

The use of theophyllines is associated with an increase in heart rate which may progress to supraventricular tachycardia or ventricular arrhythmia at high serum drug concentrations. Appearance of cardiac adverse effects is generally an indication of theophylline toxicity, although patients with a history of tachyarrhythmias may be more susceptible to the chronotropic effect of these drugs. Therapy with theophyllines should be administered cautiously in such patients. Caution is also advised in patients with hypertension, hyperthyroidism, angina pectoris, or recent myocardial infarction, since high dosages of the drugs are associated with positive inotropic as well as chronotropic effects. Clinical monitoring of serum drug concentrations is recommended to prevent toxicity.

References (12)
  1. Hendeles L, Weinberger M, Johnson G (1978) "Monitoring serum theophylline levels." Clin Pharmacokinet, 3, p. 294-312
  2. Sessler CN (1990) "Theophylline toxicity: clinical features of 116 consecutive cases." Am J Med, 88, p. 567-76
  3. Schiff GD, Hegde HK, LaCloche L, Hryhorczuk DO (1991) "Inpatient theophylline toxicity: preventable factors." Ann Intern Med, 114, p. 748-53
  4. Marchlinski FE, Miller JM (1985) "Atrial arrhythmias exacerbated by theophylline: response to verapamil and evidence for triggered activity in man." Chest, 88, p. 931-4
  5. Levine JH, Michael JR, Guarnieri T (1985) "Multifocal atrial tachycardia: a toxic effect of theophylline." Lancet, 1, p. 12-4
  6. Taniguchi A, Ohe T, Shimorura K (1989) "Theophylline-induced ventricular tachycardia in a patient with chronic lung disease: sensitivity to verapamil." Chest, 96, p. 958-9
  7. Bittar G, Friedman HS (1991) "The arrhythmogenicity of theophylline: a multivariate analysis of clinical determinants." Chest, 99, p. 1415-20
  8. Patel AK, Skatrud JB, Thomsen JH (1981) "Cardiac arrhythmias due to oral aminophylline in patients with chronic obstructive pulmonary disease." Chest, 80, p. 661-5
  9. Albert S (1987) "Aminophylline toxicity." Pediatr Clin North Am, 34, p. 61-73
  10. Milgrom H, Bender B (1993) "Current issues in the use of theophylline." Am Rev Respir Dis, 147, s33-9
  11. Chazan R, Karwat K, Tyminska K, Tadeusiak W, Droszcz W (1995) "Cardiac arrhythmias as a result of intravenous infusions of theophylline in patients with airway obstruction." Int J Clin Pharmacol Ther, 33, p. 170-5
  12. Mccarthy M (1997) "Theophylline, beta-agonists, and cardiovascular death." Lancet, 349, p. 33

Switch to consumer interaction data

Ephedrine/phenobarbital/theophylline drug interactions

There are 1000 drug interactions with ephedrine / phenobarbital / theophylline.

Ephedrine/phenobarbital/theophylline disease interactions

There are 27 disease interactions with ephedrine / phenobarbital / theophylline which include:


Report options

Loading...
QR code containing a link to this page

More about ephedrine / phenobarbital / theophylline

Related treatment guides

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.