Drug Interaction Report
2 potential interactions and/or warnings found for the following 2 drugs:
- colestipol
- Purinethol (mercaptopurine)
Interactions between your drugs
No drug ⬌ drug interactions were found between the drugs in your list. However, this does not necessarily mean no drug interactions exist. Always consult your healthcare provider.
Drug and food interactions
mercaptopurine food
Applies to: Purinethol (mercaptopurine)
ADJUST DOSING INTERVAL: The oral bioavailability of mercaptopurine (6-MP) is highly variable and may be affected by administration with food or dairy products. The mechanism by which food may impact the absorption of 6-MP has not been fully established, but cow's milk specifically has been found to contain a high concentration of xanthine oxidase, the enzyme responsible for first-pass metabolism of 6-MP to the inactive metabolite 6-thiouric acid. Incubation with cow's milk at 37 C induced a 30% catabolism of 6-MP within 30 minutes in one investigation. However, food or dairy intake with 6-MP in study patients has yielded variable results. In a study conducted in 17 children with acute lymphoblastic leukemia (ALL), oral 6-MP 75 mg/m2 administered 15 minutes after a standardized breakfast including 250 mL of milk resulted in a prolonged Tmax and a lower Cmax and AUC compared with 6-MP administration in the fasting state (mean Tmax: 2.3 hours vs. 1.2 hours; mean Cmax: 0.63 uM vs. 0.98 uM; mean AUC: 105 uM vs. 143 uM, respectively). In a different study, oral 6-MP 31.2 to 81.1 mg/m2 administered to 7 subjects with ALL 15 minutes after a standard breakfast consisting of orange juice, cereal, and toast also trended towards longer Tmax and lower Cmax values compared to 6-MP administration after an overnight fast, although the differences were not statistically significant. Two subjects had blood samples that were all below the limit of detection (20 ng/mL) following administration in the fed state. Likewise, a study of 15 pediatric patients reported non-significant 20% to 22% decreases in the Cmax and AUC of 6-MP when administered after a standardized breakfast containing both milk and cheese compared to administration after fasting, but in contrast to the two earlier studies, Tmax was decreased from 1.8 to 1.1 hours. Another study of 10 children with ALL or non-Hodgkin's lymphoma given an average oral 6-MP dose of 63 mg/m2 revealed substantial interpatient variations in the effect of food intake on 6-MP plasma levels, with Cmax changes ranging from 67% decrease to 81% increase and AUC changes ranging from 53% decrease to 86% increase relative to administration following fasting. Collectively for the group, however, there was no statistically significant difference in mean Tmax, Cmax, or AUC between the fed and fasting states. In this study, patients were fed what they normally ate at home rather than a standardized breakfast, which may have contributed to the inconsistent results. The clinical significance of the data and observations from these studies has not been determined. An interaction with milk was suspected in a four-year-old male with ALL who experienced persistent elevations of peripheral blood counts during maintenance with 6-MP and methotrexate despite increasing doses of 6-MP up to 160% of the calculated dosage for his body surface area (75 mg/m2). Cessation of concomitant milk ingestion allowed for the 6-MP dosage to return to 75 mg/m2 and resulted in control of peripheral blood counts within a week. Other data do not support a clinically relevant interaction with food or dairy products. In a prospective study of 441 patients aged 2 to 20 years receiving 6-MP for ALL maintenance, investigators found no significant association between relapse risk and 6-MP ingestion habits including administration with food versus never with food and administration with milk/dairy versus never with milk/dairy. Among the 56.2% of patients who were considered adherent by the study, there was also no significant association between red cell thioguanine nucleotide (active metabolite) levels and taking 6-MP with food versus without or taking with milk/dairy versus without. However, taking 6-MP with milk/dairy was associated with a 1.9-fold increased risk for nonadherence. These results suggest that taking 6-MP with food or milk/dairy products may not influence clinical outcome but may hinder patient adherence. Poor 6-MP adherence has been associated with an increased risk of childhood ALL relapse.
MANAGEMENT: To minimize variability in absorption and systemic exposure, the timing of mercaptopurine administration should be standardized in relation to food intake (i.e., always with food or always on an empty stomach). Some authorities suggest avoiding concomitant administration with milk or dairy products, although the clinical relevance of their effects on mercaptopurine bioavailability has not been established. As a precaution, patients may consider taking mercaptopurine at least 1 hour before or 2 hours after milk or dairy ingestion if they are able to do so without compromising treatment adherence.
References (11)
- lafolie p, bjork o, hayder s, ahstrom l, Peterson C (1989) "Variability of 6-mercaptopurine pharmacokinetics during oral maintenance therapy of children with acute leukemia." Med Oncol Tumor Pharmacother, 6, p. 259-65
- (2024) "Product Information. Mercaptopurine (mercaptopurine)." Quinn Pharmaceutical. LLC
- (2024) "Product Information. Allmercap (mercaptOPURine)." Link Medical Products Pty Ltd T/A Link Pharmaceuticals
- (2024) "Product Information. Xaluprine (mercaptopurine)." Nova Laboratories Ltd
- (2023) "Product Information. Mercaptopurine (mercaptopurine)." Sterimax Inc
- Landier W, Hageman L, Chen Y, et al. (2017) "Mercaptopurine ingestion habits, red cell thioguanine nucleotide levels, and relapse risk in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group Study AALL03N1." J Clin Oncol, 35, p. 1730-6
- rivard ge, Lin KT, Leclerc JM, David M (1989) "Milk could decrease the bioavailability of 6-mercaptopurine." Am J Pediatr Hematol Oncol, 11, p. 402-6
- Burton NK, barnett mj, Aherne GW, et al. (1986) "The effect of food on the oral administration of 6-mercaptopurine." Cancer Chemother Pharmacol, 18, p. 90-1
- Riccardi R, Balis FM, ferrara p, et al. (1986) "Influence of food intake on bioavailability of oral 6-mercaptopurine in children with acute lymphoblastic leukemia." Pediatr Hematol Oncol, 3, p. 319-24
- Lonnerholm G, Kreuger A, Lindstrom B, et al. (1989) "Oral mercaptopurine in childhood leukemia: influence of food intake on bioavailability." Pediatr Hematol Oncol, 6, p. 105-12
- Sofianou-Katsoulis A, Khakoo G, Kaczmarski R, et al. (2006) "Reduction in bioavailability of 6-mercaptopurine on simultaneous administration with cow's milk." Pediatr Hematol Oncol, 23, p. 485-7
colestipol food
Applies to: colestipol
ADJUST DOSING INTERVAL: Bile acid sequestrants and the phosphate binder, sevelamer, can decrease the absorption of fat-soluble vitamins A, D, E, and K. By binding bile acids, these agents may interfere with normal fat digestion and absorption, thereby preventing the absorption of fat-soluble vitamins. When 8 grams of cholestyramine was administered simultaneously with a normal meal containing 250,000 units of vitamin A acetate in four healthy young adult subjects, plasma vitamin A levels were significantly reduced during a 9-hour postprandial period compared to the values obtained with the control meal. Coadministration with 4 grams of cholestyramine had no significant effect. In a crossover study involving healthy subjects, coadministration of sevelamer with calcitriol resulted in a significant reduction in bioavailability for calcitriol (calcitriol with sevelamer vs calcitriol alone: AUC 137 pg*h/mL vs 318 pg*h/mL and Cmax 40.1 pg/mL vs 49.7 pg/mL, respectively). Chronic use of bile acid sequestrants has been rarely associated with an increased bleeding tendency due to hypoprothrombinemia resulting from vitamin K deficiency. Isolated cases of Vitamin A (including one case of night blindness) and D deficiencies have also been reported with chronic cholestyramine therapy.
MANAGEMENT: When bile acid sequestrants are given for prolonged periods, some manufacturers recommend that concomitant supplementation with water-miscible or parenteral forms of fat-soluble vitamins be considered. If oral vitamin supplements are used with cholestyramine or colestipol, advise patients to take them at least 1 hour before or 4 to 6 hours after the bile acid sequestrant to minimize the potential impact on their absorption. No recommendations are available for sevelamer, but it may be advisable to follow the same precautions.
References (11)
- Gross L, Brotman M (1970) "Hypoprothrombinemia and hemorrhage associated with cholestyramine therapy." Ann Intern Med, 72, p. 95-6
- Shojania AM, Grewar D (1986) "Hypoprothrombinemic hemorrhage due to cholestyramine therapy." Can Med Assoc J, 134, p. 609-10
- Longstreth GF, Newcomer AD (1975) "Drug-induced malabsorption." Mayo Clin Proc, 50, p. 284-93
- Acuna R, Gonzalez Ceron M (1977) "Hypoprothrombinemia and bleeding associated to treatment with cholestyramine (author's transl)." Rev Med Chil, 105, p. 27-8
- (2001) "Product Information. Rocaltrol (calcitriol)." Roche Laboratories
- (2001) "Product Information. Welchol (colesevelam)." Daiichi Sankyo, Inc.
- (2005) "Product Information. Fosamax Plus D (alendronate-cholecalciferol)." Merck & Co., Inc
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- Peirce D, Hossack S, Poole L, et al. (2011) "The effect of sevelamer carbonate and lanthanum carbonate on the pharmacokinetics of oral calcitriol." Nephrol Dial Transplant, 26, p. 1615-21
- Vroonhof K, van Rijn HJM, van Hattum J (2003) "Vitamin K deficiency and bleeding after long-term use of cholestyramine." Neth J Med, 61, p. 19-21
Therapeutic duplication warnings
No duplication warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
See also:
Leqvio
Leqvio is used in adults with primary hyperlipidemia to reduce low-density lipoprotein (LDL-C) ...
Repatha
Repatha is used to lower high cholesterol alongside dietary changes and to reduce the risk of major ...
Ozempic
Learn about Ozempic (semaglutide) for type 2 diabetes treatment, weight management, cardiovascular ...
Lipitor
Lipitor is used to treat high cholesterol. Learn about side effects, interactions and indications.
Crestor
Crestor (rosuvastatin) is used to treat high cholesterol and high triglycerides in the blood ...
Zetia
Zetia (ezetimibe) is used to treat high cholesterol. Includes Zetia side effects, interactions and ...
Zocor
Zocor (simvastatin) reduces low-density lipoprotein cholesterol and total cholesterol in the blood ...
TriCor
Tricor (fenofibrate) helps reduce cholesterol and triglycerides (fatty acids) in the blood ...
Mevacor
Mevacor is used for high cholesterol, high cholesterol, familial heterozygous ...
Learn more
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.