Skip to main content

Drug Interaction Report

3 potential interactions and/or warnings found for the following 2 drugs:

Filter by interaction and/or warning

Interactions between your drugs

Major

minocycline digoxin

Applies to: Minocin for Injection (minocycline), digoxin

MONITOR CLOSELY: Tetracyclines may increase serum levels of orally administered digoxin by preventing specific bacteria, present in the lower intestine, from inactivating digoxin. About 10% of the population use this mechanism to metabolize digoxin. When digoxin was administered with tetracycline in a pharmacokinetic study done in adults, the digoxin serum concentration increased by 100%. Currently there is no data demonstrating the effects of other tetracyclines on digoxin levels. The risk of an interaction may be less with digoxin solution in capsules because absorption occurs in the upper GI tract.

MANAGEMENT: Close clinical monitoring of digoxin serum concentration as well as signs or symptoms of digoxin toxicity are recommended when antibiotic therapy is initiated or discontinued. It is advisable to obtain a baseline digoxin level prior to initiating concomitant therapy. Some authorities recommend reducing the digoxin dose by around 30% to 50% or modifying the dosing frequency, followed by additional monitoring. Patients should be advised to notify their physicians if they experience nausea, anorexia, fatigue, visual changes, slow pulse, and/or irregular heartbeats.

References (9)
  1. Lindenbaum J, Rund DG, Butler VP Jr, Tse-Eng D, Saha JR (1981) "Inactivation of digoxin by the gut flora: reversal by antibiotic therapy." N Engl J Med, 305, p. 789-94
  2. Lindenbaum J, Tse-Eng D, Butler VP, Rund DG (1981) "Urinary excretion of reduced metabolites of digoxin." Am J Med, 71, p. 67-74
  3. Rodin SM, Johnson BF (1988) "Pharmacokinetic interactions with digoxin." Clin Pharmacokinet, 15, p. 227-44
  4. (2019) "Product Information. Digoxin (digoxin)." Amneal Pharmaceuticals LLC
  5. (2022) "Product Information. PMS-Digoxin (digoxin)." Pharmascience Inc
  6. (2022) "Product Information. Digoxin (digoxin)." Aspen Pharma Trading Ltd
  7. (2020) "Product Information. Sigmaxin (digoxin)." (Obsolete) Aspen Pharma Pty Ltd
  8. MacLeod-Glover N, Mink M, Yarema M, Chuang R (2016) "Digoxin toxicity: case for retiring its use in elderly patients?" Can Fam Physician, 62, p. 223-8
  9. Zhanel GG, cheung d, Adam H, et al. (2016) "Review of eravacycline, a novel fluorocycline antibacterial agent." Drugs, 76, p. 567-88

Drug and food/lifestyle interactions

Moderate

minocycline food/lifestyle

Applies to: Minocin for Injection (minocycline)

GENERALLY AVOID: The oral bioavailability of quinolone and tetracycline antibiotics may be reduced by concurrent administration of preparations containing polyvalent cations such as aluminum, calcium, iron, magnesium, and zinc. Therapeutic failure may result. The proposed mechanism is chelation of quinolone and tetracycline antibiotics by di- and trivalent cations, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. Reduced gastrointestinal absorption of the cations should also be considered.

MANAGEMENT: Concomitant administration of oral quinolone and tetracycline antibiotics with preparations containing aluminum, calcium, iron, magnesium, and/or zinc salts should generally be avoided. Otherwise, the times of administration should be staggered by as much as possible to minimize the potential for interaction. Quinolones should typically be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation preparations, depending on the quinolone and formulation. Likewise, tetracyclines and polyvalent cation preparations should typically be administered 2 to 4 hours apart. The prescribing information for the antibiotic should be consulted for more specific dosing recommendations.

References (51)
  1. Polk RE, Helay DP, Sahai J, Drwal L, Racht E (1989) "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother, 33, p. 1841-4
  2. Nix DE, Watson WA, Lener ME, et al. (1989) "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther, 46, p. 700-5
  3. Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC (1990) "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother, 34, p. 931-3
  4. Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT (1992) "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother, 36, p. 830-2
  5. Yuk JH (1989) "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc, 262, p. 901
  6. Neuvonen PJ (1976) "Interactions with the absorption of tetracyclines." Drugs, 11, p. 45-54
  7. Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P (1989) "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother, 33, p. 1901-7
  8. Nguyen VX, Nix DE, Gillikin S, Schentag JJ (1989) "Effect of oral antacid administration on the pharmacokinetics of intravenous doxycycline." Antimicrob Agents Chemother, 33, p. 434-6
  9. Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW (1992) "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol, 33, p. 115-6
  10. Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ (1989) "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother, 33, p. 99-102
  11. Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A (1990) "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother, 34, p. 432-5
  12. Akerele JO, Okhamafe AO (1991) "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother, 28, p. 87-94
  13. Gothoni G, Neuvonen PJ, Mattila M, Hackman R (1972) "Iron-tetracycline interaction: effect of time interval between the drugs." Acta Med Scand, 191, p. 409-11
  14. Garty M, Hurwitz A (1980) "Effect of cimetidine and antacids on gastrointestinal absorption of tetracycline." Clin Pharmacol Ther, 28, p. 203-7
  15. Gotz VP, Ryerson GG (1986) "Evaluation of tetracycline on theophylline disposition in patients with chronic obstructive airways disease." Drug Intell Clin Pharm, 20, p. 694-6
  16. McCormack JP, Reid SE, Lawson LM (1990) "Theophylline toxicity induced by tetracycline." Clin Pharm, 9, p. 546-9
  17. D'Arcy PF, McElnay JC (1987) "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm, 21, p. 607-17
  18. Wadworth AN, Goa KL (1991) "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs, 42, p. 1018-60
  19. Shimada J, Shiba K, Oguma T, et al. (1992) "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother, 36, p. 1219-24
  20. Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
  21. Venho VM, Salonen RO, Mattila MJ (1978) "Modification of the pharmacokinetics of doxycycline in man by ferrous sulphate or charcoal." Eur J Clin Pharmacol, 14, p. 277-80
  22. (2002) "Product Information. Minocin (minocycline)." Lederle Laboratories
  23. Sahai J, Healy DP, Stotka J, Polk RE (1993) "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol, 35, p. 302-4
  24. (2001) "Product Information. Declomycin (demeclocycline)." Lederle Laboratories
  25. Lehto P, Kivisto KT (1994) "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother, 38, p. 248-51
  26. Noyes M, Polk RE (1988) "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med, 109, p. 168-9
  27. Grasela TH Jr, Schentag JJ, Sedman AJ, et al. (1989) "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother, 33, p. 615-7
  28. Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
  29. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  30. Lehto P, Kivisto KT (1994) "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther, 56, p. 477-82
  31. Bateman FJ (1970) "Effects of tetracyclines." Br Med J, 4, p. 802
  32. Neuvonen PJ, Gothoni G, Hackman R, Bjorksten K (1970) "Interference of iron with the absorption of tetracyclines in man." Br Med J, 4, p. 532-4
  33. Greenberger NJ (1971) "Absorption of tetracyclines: interference by iron." Ann Intern Med, 74, p. 792-3
  34. Neuvonen PJ, Penttila O (1974) "Effect of oral ferrous sulphate on the half-life of doxycycline in man." Eur J Clin Pharmacol, 7, p. 361-3
  35. Spivey JM, Cummings DM, Pierson NR (1996) "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy, 16, p. 314-6
  36. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  37. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  38. (2001) "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer
  39. (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
  40. Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother, 39 Suppl B, p. 93-7
  41. Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H (1997) "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother, 41, p. 1668-72
  42. Honig PK, Gillespie BK (1998) "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet, 35, p. 167-71
  43. Johnson RD, Dorr MB, Talbot GH, Caille G (1998) "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther, 20, p. 1149-58
  44. Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H (1999) "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother, 43, p. 1067-71
  45. Allen A, Vousden M, Porter A, Lewis A (1999) "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy, 45, p. 504-11
  46. Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S (2000) "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol, 49, p. 98-103
  47. (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
  48. (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
  49. (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
  50. (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
  51. (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.
Minor

digoxin food/lifestyle

Applies to: digoxin

Administration of digoxin with a high-fiber meal has been shown to decrease its bioavailability by almost 20%. Fiber can sequester up to 45% of the drug when given orally. Patients should be advised to maintain a regular diet without significant fluctuation in fiber intake while digoxin is being titrated.

Grapefruit juice may modestly increase the plasma concentrations of digoxin. The mechanism is increased absorption of digoxin due to mild inhibition of intestinal P-glycoprotein by certain compounds present in grapefruits. In 12 healthy volunteers, administration of grapefruit juice with and 30 minutes before, as well as 3.5, 7.5, and 11.5 hours after a single digoxin dose (0.5 mg) increased the mean area under the plasma concentration-time curve (AUC) of digoxin by just 9% compared to administration with water. Moreover, P-glycoprotein genetic polymorphism does not appear to influence the magnitude of the effects of grapefruit juice on digoxin. Thus, the interaction is unlikely to be of clinical significance.

References (2)
  1. Darcy PF (1995) "Nutrient-drug interactions." Adverse Drug React Toxicol Rev, 14, p. 233-54
  2. Becquemont L, Verstuyft C, Kerb R, et al. (2001) "Effect of grapefruit juice on digoxin pharmacokinetics in humans." Clin Pharmacol Ther, 70, p. 311-6

Therapeutic duplication warnings

No duplication warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

See also:

Learn more

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.