Skip to main content

Drug Interactions between propranolol and Skyclarys

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

No interactions were found between propranolol and Skyclarys. However, this does not necessarily mean no interactions exist. Always consult your healthcare provider.

propranolol

A total of 591 drugs are known to interact with propranolol.

Skyclarys

A total of 461 drugs are known to interact with Skyclarys.

Drug and food interactions

Moderate

propranolol food

Applies to: propranolol

ADJUST DOSING INTERVAL: The bioavailability of propranolol may be enhanced by food.

MANAGEMENT: Patients may be instructed to take propranolol at the same time each day, preferably with or immediately following meals.

References (2)
  1. Olanoff LS, Walle T, Cowart TD, et al. (1986) "Food effects on propranolol systemic and oral clearance: support for a blood flow hypothesis." Clin Pharmacol Ther, 40, p. 408-14
  2. Byrne AJ, McNeil JJ, Harrison PM, Louis W, Tonkin AM, McLean AJ (1984) "Stable oral availability of sustained release propranolol when co-administered with hydralazine or food: evidence implicating substrate delivery rate as a determinant of presystemic drug interactions." Br J Clin Pharmacol, 17, s45-50
Moderate

omaveloxolone food

Applies to: Skyclarys (omaveloxolone)

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of omaveloxolone, which is primarily metabolized by CYP450 3A4. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported for other CYP450 3A4 inhibitors. When administered with itraconazole, a potent CYP450 3A4 inhibitor, omaveloxolone peak plasma concentration (Cmax) and systemic exposure (AUC) increased 3-fold and 4-fold, respectively. When administered with verapamil, a moderate CYP450 3A4 inhibitor, omaveloxolone Cmax and AUC increased approximately 1.25-fold each. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to omaveloxolone may increase the risk of adverse reactions such as lipid abnormalities and increased aminotransferases and B-type natriuretic peptide (BNP).

ADJUST DOSING INTERVAL: Food may increase the oral bioavailability of omaveloxolone. Coadministration with a high-fat meal (800 to 1000 calories, with approximately 150, 250, and 500 to 600 calories from protein, carbohydrates, and fat, respectively) increased omaveloxolone Cmax and AUC by approximately 350% and 15%, respectively, compared to fasted conditions.

MANAGEMENT: Omaveloxolone should be administered on an empty stomach at least 1 hour before eating. Patients should avoid consumption of grapefruit, grapefruit juice, or supplements that contain grapefruit during treatment with omaveloxolone.

References (1)
  1. (2023) "Product Information. Skyclarys (omaveloxolone)." Reata Pharmaceuticals, Inc.
Moderate

propranolol food

Applies to: propranolol

ADJUST DOSING INTERVAL: Concurrent administration with calcium salts may decrease the oral bioavailability of atenolol and possibly other beta-blockers. The exact mechanism of interaction is unknown. In six healthy subjects, calcium 500 mg (as lactate, carbonate, and gluconate) reduced the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of atenolol (100 mg) by 51% and 32%, respectively. The elimination half-life increased by 44%. Twelve hours after the combination, beta-blocking activity (as indicated by inhibition of exercise tachycardia) was reduced compared to that with atenolol alone. However, during a 4-week treatment in six hypertensive patients, there was no difference in blood pressure values between treatments. The investigators suggest that prolongation of the elimination half-life induced by calcium coadministration may have led to atenolol cumulation during long-term dosing, which compensated for the reduced bioavailability.

MANAGEMENT: It may help to separate the administration times of beta-blockers and calcium products by at least 2 hours. Patients should be monitored for potentially diminished beta-blocking effects following the addition of calcium therapy.

References (1)
  1. Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E (1981) "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther, 30, p. 429-35
Moderate

propranolol food

Applies to: propranolol

MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.

MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.

References (4)
  1. (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
  2. jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
  3. Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
  4. Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.