Drug Interactions between Diltiazem Hydrochloride SR and dulaglutide
This report displays the potential drug interactions for the following 2 drugs:
- Diltiazem Hydrochloride SR (diltiazem)
- dulaglutide
Interactions between your drugs
No interactions were found between Diltiazem Hydrochloride SR and dulaglutide. However, this does not necessarily mean no interactions exist. Always consult your healthcare provider.
Diltiazem Hydrochloride SR
A total of 711 drugs are known to interact with Diltiazem Hydrochloride SR.
- Diltiazem hydrochloride sr is in the following drug classes: calcium channel blockers, group IV antiarrhythmics.
- Diltiazem hydrochloride sr is used to treat the following conditions:
dulaglutide
A total of 271 drugs are known to interact with dulaglutide.
- Dulaglutide is in the drug class GLP-1 Agonists (Incretin Mimetics).
- Dulaglutide is used to treat the following conditions:
Drug and food interactions
dilTIAZem food
Applies to: Diltiazem Hydrochloride SR (diltiazem)
MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.
MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.
MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.
References (5)
- Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
- Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A (1994) "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie, 49, p. 675-9
- Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
- Christensen H, Asberg A, Holmboe AB, Berg KJ (2002) "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol, 58, p. 515-520
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
dulaglutide food
Applies to: dulaglutide
MONITOR: Glucagon-like peptide-1 (GLP-1) receptor agonists and dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists can delay gastric emptying, which may impact the absorption of concomitantly administered oral medications. Mild to moderate decreases in plasma concentrations of coadministered drugs have been demonstrated in pharmacokinetic studies for some GLP-1 receptor agonists (e.g., exenatide, lixisenatide), but not others. According to the prescribing information, liraglutide did not affect the absorption of several orally administered drugs to any clinically significant extent, including acetaminophen, atorvastatin, digoxin, griseofulvin, lisinopril, and an oral contraceptive containing ethinyl estradiol-levonorgestrel. Likewise, no clinically relevant effect on absorption was observed for concomitantly administered oral drugs studied with albiglutide (digoxin, ethinyl estradiol-norethindrone, simvastatin, warfarin), dulaglutide (acetaminophen, atorvastatin, digoxin, ethinyl estradiol-norelgestromin, lisinopril, metformin, metoprolol, sitagliptin, warfarin), or semaglutide (atorvastatin, digoxin, ethinyl estradiol-levonorgestrel, metformin, warfarin). The impact of dual GLP-1 and GIP receptor agonist tirzepatide on gastric emptying was reported to be dose- and time-dependent, with the greatest effect observed after a single 5 mg dose but diminished after subsequent doses. When acetaminophen was administered following a single 5 mg dose of tirzepatide, acetaminophen peak plasma concentration (Cmax) was decreased by 50% and its median time to peak plasma concentration (Tmax) delayed by 1 hour. However, no significant impact on acetaminophen Cmax and Tmax was observed after 4 consecutive weekly doses of tirzepatide (5 mg/5 mg/8 mg/10 mg), and the overall exposure (AUC) of acetaminophen was unaffected. Tirzepatide at lower doses of 0.5 mg and 1.5 mg also had minimal effects on acetaminophen exposure.
MANAGEMENT: Although no specific dosage adjustment of concomitant medications is generally recommended based on available data, potential clinical impact on some oral medications cannot be ruled out, particularly those with a narrow therapeutic index or low bioavailability, those that depend on threshold concentrations for efficacy (e.g., antibiotics), and those that require rapid gastrointestinal absorption (e.g., hypnotics, analgesics). Pharmacologic response to concomitantly administered oral medications should be monitored more closely following initiation, dose adjustment, or discontinuation of a GLP-1 receptor agonist or a dual GLP-1 and GIP receptor agonist.
References (9)
- (2005) "Product Information. Byetta (exenatide)." Amylin Pharmaceuticals Inc
- (2010) "Product Information. Victoza (liraglutide)." Novo Nordisk Pharmaceuticals Inc
- (2014) "Product Information. Tanzeum (albiglutide)." GlaxoSmithKline
- (2014) "Product Information. Trulicity (dulaglutide)." Eli Lilly and Company
- (2016) "Product Information. Adlyxin (lixisenatide)." sanofi-aventis
- (2022) "Product Information. Ozempic (1 mg dose) (semaglutide)." Novo Nordisk Pharmaceuticals Inc
- (2023) "Product Information. Mounjaro (tirzepatide)." Eli Lilly and Company Ltd
- (2023) "Product Information. Mounjaro (tirzepatide)." Lilly, Eli and Company
- Eli Lilly Canada Inc. (2023) Product monograph including patient medication information MOUNJARO tirzepatide injection. https://pdf.hres.ca/dpd_pm/00068421.PDF
dilTIAZem food
Applies to: Diltiazem Hydrochloride SR (diltiazem)
MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.
MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.
References (14)
- Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
- Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
- Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
- Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
- O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
- Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
- Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
- Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
- Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
- Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
- Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
- McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
- Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
- Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.