Skip to Content

Maca

Scientific Name(s): Lepidium meyenii Walp.
Common Name(s): Ayak chichira, Ayuk willku, Maino, Peruvian ginseng

Clinical Overview

Use

Numerous studies on the aphrodisiac and fertility-enhancing properties of maca are documented in scientific literature.

Dosing

Maca is available commercially in several dosage forms including powder, liquid, tablets, and capsules. Most commercial Web sites recommend a daily dose of 1 dried maca extract 450 mg capsule 3 times daily taken orally with food.

Contraindications

Patients with thyroid conditions should avoid maca because glucosinolates taken in excess and combined with a low-iodine diet can cause goiter.

Pregnancy/Lactation

Avoid use during pregnancy and lactation due to lack of safety and efficacy data.

Interactions

None well documented.

Adverse Reactions

There is no evidence of adverse reactions with maca. Maca has been reported to have a low degree of acute oral toxicity in animals and low cellular toxicity in vitro.

Toxicology

No adverse reactions were reported in an animal study with rats fed maca extract in doses up to 5 g/kg. Its long-time use as a food product suggests low potential for toxicity.

Botany

The genus Lepidium belongs to the family Brassicaceae, which includes approximately 175 species. The aerial part of maca has 12 to 20 leaves, and the foliage forms a mat-like, creeping system of stems that grows close to the soil. The underground portion of the plant, known as the hypocotyl, is a storage organ and is the part that is used commercially. The hypocotyl can be a variety of colors, such as red, purple, cream, yellow, or black, and is 10 to 14 cm long and 3 to 5 cm wide; a cold climate seems to be critical for its formation or growth.1 Maca is cultivated in a narrow, high-altitude zone of the Andes Mountains in Peru, particularly near Carhuamayo and Junin.2 Maca has one of the highest frost tolerances of any cultivated plant, allowing it to grow at altitudes of 3,800 to 4,800 m above sea level in the puna and suni ecosystems, where only alpine grasses and bitter potatoes can survive.3, 4 Maca and several related wild species are also found in the Bolivian Andes.5 Although traditionally cultivated as a vegetable crop, its medicinal use has recently become more prominent in Peru. Maca is related to the common garden cress, Lepidium sativum L.

History

Maca was domesticated at least 1,300 to 2,000 years ago1 and used as an important food by native Andean people because of its high nutritional value as well as to enhance fertility and sexual performance.6 Throughout the Inca empire, maca consumption was limited to the privileged classes and often given as a prize to warriors.7 Indigenous people used maca to treat numerous conditions including anemia, tuberculosis, sterility, and fatigue. Because of its claimed anabolic and aphrodisiac effects, maca is often referred to as the "ginseng of the Andes" or "Peruvian ginseng."1, 8, 9 Although its efficacy is not proven, some athletes have used maca as an alternative to anabolic steroids.10 Ethnobotanical studies document the use of maca for depression, cancer, as well as menstrual and sexual disorders.11 Other studies document its use for regulation of hormonal secretion, immunostimulation, and memory improvement.8

The tuberous hypocotyl of the plant or root may be eaten raw or cooked, and dried and stored for years without serious deterioration. The root has a tangy taste and an aroma similar to that of butterscotch. The dried roots may be mixed with honey or fruits to prepare juices, gelatins, jams, and alcoholic beverages. In South America, the roots are used to make porridge (known as mazamorra), jam, and pudding. In Peru, the roots are made into a sweet, fragrant drink called maca chichi. Flour may be added to the roots to prepare bread and cookies. A maca coffee is made from toasted and grounded hypocotyl roots. Ground hypocotyl is sold as a nutraceutical under several commercial names and purported to enhance fertility and act as an aphrodisiac in men, women, and livestock.1, 8

Chemistry

The root of maca is the primary medicinal component, containing up to 80% water.1 The following is a brief review of studies on the chemical components of the plant species.

Glucosinolates and isothiocyanates

Glucosinolates and isothiocyanates have anticancer activity and may be responsible for some of the activity in the plant species. The aromatic isothiocyanates may be associated with aphrodisiac activity.1, 3, 9

Phenolic and saccharide compounds

Antioxidant activity may be associated with the 22 phenolic compounds identified in maca.12 One study identified 53 components from its essential oil. The dried root contains 59% saccharides.1

Other constituents

Maca roots contain several amino acids, trace minerals, vitamins, sterols, protein, fiber, and fatty acids.1, 9 The macaenes and macamides have been determined in several commercial products. Macamides may inhibit cannabinoids and act as competitive ligands.1, 13, 14

Other species of Lepidium have been analyzed. L. sativum contains many glucosinolates, and in vitro assays document tumorigenesis inhibition and bactericidal, antiviral, and fungicidal activity.15, 16 An alkaloid, lepidine, has been isolated from the seeds of L. sativum.17 Evomonoside, a cardiac glycoside, has been isolated in substantial yield from the seeds of Lepidium apetalum, a Korean species.18 Several flavones and flavonoid glycosides have also been isolated from the genus Lepidium.19

Uses and Pharmacology

Numerous animal and human studies on the aphrodisiac and fertility-enhancing properties of maca are found in the scientific literature. The exact mechanism of action remains to be elucidated. One study established that maca does not directly modulate androgen receptors.11

Sexual behavior

Animal data

Oral administration of a purified lipid extract from L. meyenii enhanced the sexual function of mice and rats; this was evidenced by an increase in the number of complete copulatory events in a 3-hour period of sperm-positive female mice and a decrease in a latent period of erection in male rats with erectile dysfunction.20

Hexane, chloroform, and methanol maca extracts administered to rats decreased intromission latency, intercopulatory interval and increased intromission frequency and copulatory efficacy (P < 0.05). Overall, the maca hexane extract was most effective.21

The effect of chronic and acute administration of pulverized maca root was studied on the sexual performance parameters in male rats. Both chronic and acute treatment of maca decreased first mount, first intromission, ejaculation, and postejaculation.10 Another similar study found that chronic administration of maca did not increase locomotion or anxiety, and after 21 days of treatment had no effect on sexual behavior.22

Clinical data

Maca improved sexual desire in 57 healthy men (21 to 56 years of age) treated with 1.5 to 3 g/day of gelatinized maca root (500 or 1,000 mg 3 times a day) in a 12-week, double-blind, placebo-controlled, randomized, parallel trial. A dose-response effect was not demonstrated with the 3 versus 1.5 g dose. The improvement of sexual desire was independent of any changes in mood, serum testosterone, or estradiol levels.23

Another clinical trial (n=50) reported improvements in erectile dysfunction in both placebo and maca (2,400 mg daily) study groups over 12 weeks. A larger effect size was reported for maca-treated participants.24 A smaller study (n=16) reported a dose-dependent effect, with 1,500 mg daily not effective, but 3,000 mg daily as effective in selective-serotonin reuptake inhibitor (SSRI)-associated sexual dysfunction in men.25

In women, maca (3.5 g/day for 6 weeks) reportedly reduced psychological symptoms including depression and sexual dysfunction in a small clinical study (n=14). No significant changes were found for somatic or vasomotor scores.26 Similar findings on depression were reported in a study in a Chinese population (n=29).27

Sex steroid hormones

Animal data

Blood levels of progesterone in female mice and blood levels of testosterone in male mice were increased during administration of maca. However, maca administration did not affect levels of blood 17-beta-estradiol or the rate of embryo implantation in female mice.28

Maca administered to male rats exposed to a high altitude of 4,340 m prevented altitude-induced reductions in body weight and epididymal sperm count. The mechanism of action may be associated with maca acting on stage VIII and stages IX through XI of the seminiferous cycle. Stage VIII is associated with the release of spermatozoa to the lumen of the seminiferous tubules. Stages IX through XI are associated with the first mitosis of spermatogonia A.29 A similar study by the same author found that oral administration of an aqueous maca extract to normal adult male rats for 14 days increased spermatogenesis, acting on stages IX through XI.30

One study examined the effect on spermatogenesis in rats after short-term (7 days) and long-term (42 days) treatment with red, yellow, and black ecotypes of maca. Yellow and red maca increased stage VIII after 7 days, but black maca increased stages II through VI and VIII. The biological response of black maca on sperm counts and epididymal sperm motility was much more pronounced. The same results were found after 42 days of treatment.2 Black maca improved sperm counts in the epididymis within 1 day; this regulatory mechanism may be associated with the testes rather than an actual increase in sperm.31

Administration of aqueous yellow maca extract to female mice increased female fertility and litter size. Treatment with the extract also increased uterine weight in ovariectomized animals. The effects of maca on litter size and uterine weight may be caused by a progestin versus estrogenic effect, because maca contains other sterols besides the phytoestrogen sitosterol.32

Clinical data

Maca increased seminal volume, sperm count per ejaculum, motile sperm count, and sperm motility in 9 healthy men (24 to 44 years of age) treated over 4 months with gelatinized maca root 1,500 or 3,000 mg/day. Serum hormone levels of luteinizing hormone, follicle stimulating hormone, prolactin, testosterone, and estradiol were not modified with maca treatment. Because serum testosterone levels were not affected, the mechanism of action may be associated with augmentation of bioavailable testosterone or testosterone receptor binding. Maca may also act via an androgen-independent mechanism because the weight of the seminal vesicle was not influenced by maca.33 A 12-week, double-blind, placebo-controlled, randomized, parallel study of 56 healthy men (21 to 56 years of age) administered gelatinized maca root 1,500 or 3,000 mg/day had similar results.34

A small study in postmenopausal women (n=14) reported no effect of maca (3.5 g/day for 6 weeks) on serum concentrations of estradiol, follicle-stimulating hormone, luteinizing hormone, or sex hormone-binding globulin.26 Similar findings were reported in a study in a Chinese population (n=29), which additionally reported no effect of maca on lipid profiles and serum cytokines but there was a decrease in diastolic blood pressure.27

Other pharmacological effects

Antioxidant

Maca protects cells from oxidative stress and is capable of scavenging free radicals.14, 35 Maca decreased the levels of very low density lipoproteins (VLDL); low density lipoproteins; total cholesterol; and the level of triacylglycerols in the plasma, VLDL, and liver in rats. Maca and rosiglitazone improved glucose tolerance and lowered glucose levels in blood.36

A study in high altitude-living Peruvian adults reported an association of maca consumption with lower serum interleukin-6 levels (as a marker of oxidative stress) and low chronic mountain sickness scores.37

Antiviral

In vitro studies/animal data include antiviral effects (eg, influenza).38

Learning and depression

Studies in rodents suggest that maca exerts antidepressant actions. The mechanism proposed for the observed effects includes the effect of phytoestrogens,39 monoamine neurotransmission,40 and the activation of noradrenergic and dopaminergic systems.41

Osteoporosis

Maca improved bone mass and restored the trabecular network in lumbar vertebrae in ovariectomized rats. Calcium, magnesium, and silica are useful in bone calcium loss in menopausal women and each are found in maca.42

Prostatic hyperplasia

Red maca reduced ventral prostate size in normal and testosterone enanthate-treated rats. The mechanism of action may be associated with the activity of glucosinolates on androgen receptors43; other studies have challenged this mechanism associated with glucosinolates.44

A recent study showed that finasteride reduced prostate and seminal vesicle weight, whereas red maca only reduced prostate weight. The results suggest that red maca may exert its effects at a level after 5-alpha reductase conversion of testosterone to dihydrotestosterone. Red maca reverses androgen action in the prostate organ and does not affect serum testosterone levels.45

Dosing

Maca is available commercially in several dosage forms including powder, liquid, tablets, and capsules. Most commercial Web sites recommend a daily dose of 1 dried maca extract 450 mg capsule 3 times daily taken orally with food.

A small study (n=16) reported a dose-dependent effect, with 1,500 mg maca daily not effective, but 3,000 mg maca daily as effective in SSRI-associated sexual dysfunction in men.25

Doses of 3.5 g maca daily for 6 weeks have been used in postmenopausal women.26

Pregnancy / Lactation

Avoid use during pregnancy and lactation due to lack of safety and efficacy data.

Interactions

Maca protected spermatogenesis in mice exposed to lead acetate.46 It also enhanced spermatogenesis in mice following damage induced by organophosphorous pesticide.47

Adverse Reactions

There is no evidence of adverse reactions to maca. Maca has been reported to have a low degree of acute oral toxicity in animals and low cellular toxicity in vitro.48

Toxicology

No adverse reactions were reported in an animal study with rats fed maca extract in doses up to 5 g/kg, equivalent to an intake of 770 g of hypocotyls in a 70 kg man.49

The presence of substantial amounts of a cardiac glycoside in the related species, L. apetalum18 is cause for concern. Cardioactive substances have also been detected in L. sativum.50 However, dried maca roots have been consumed for many years without reports of cardiotoxicity. Lepidium virginicum was inactive in a screen for genotoxicity.51

References

1. Valentová K, Ulrichová J. Smallanthus sonchifolius and Lepidium meyenii —prospective Andean crops for the prevention of chronic diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2003;147(2):119-130.15037892
2. Gonzales C, Rubio J, Gasco M, Nieto J, Yucra S, Gonzales GF. Effect of short-term and long-term treatments with three ecotypes of Lepidium meyenii (MACA) on spermatogenesis in rats. J Ethnopharmacol. 2006;103(3):448-454.16174556
3. Dini I, Tenore GC, Dini A. Glucosinolates from maca (Lepidium meyenii). Biochem Syst Ecol. 2002;30(11):1087-1090.
4. Quiros C, et al. Physiological studies and determination of chromosome number in maca. Lepidium meyenii (Brassicaceae). Econ Bot. 1996;50(2):216.
5. Toledo J, et al. Genetic variability of Lepidium meyenii and other Andean lepidium species (Brassicaceae) assessed by molecular markers. Ann Bot. 1998;82(4):523.
6. Cui B, Zheng BL, He K, Zheng QY. Imidazole alkaloids from Lepidium meyenii. J Nat Prod. 2003;66(8);1101-1103.12932133
7. Piacente S, Carbone V, Plaza A, Zampelli A, Pizza C. Investigation of the tuber constituents of maca (Lepidium meyenii Walp.). J Agric Food Chem. 2002;50(20):5621-5625.12236688
8. Ganzera M, Zhao J, Muhammad I, Khan IA. Chemical profiling and standardization of Lepidium meyenii (maca) by reversed phase high performance liquid chromatography. Chem Pharm Bull (Tokyo). 2002;50(7):988-991.12130863
9. Zhao J, Muhammad I, Dunbar DC, Mustafa J, Khan IA. New alkamides from maca (Lepidium meyenii). J Agric Food Chem. 2005;53(3);690-693.
10. Cicero AF, Bandieri E, Arletti R. Lepidium meyenii Walp. improves sexual behaviour in male rats independently from its action on spontaneous locomotor activity. J Ethnopharmacol. 2001;75(2-3):225-229.11297856
11. Bogani P, Simonini F, Iriti M, et al. Lepidium meyenii (maca) does not exert direct androgenic activities. J Ethnopharmacol. 2006;104(3):415-417.16239088
12. Tellez MR, Khan IA, Kobaisy M, Schrader KK, Dayan FE, Osbrink W. Composition of the essential oil of Lepidium meyenii (Walp). Phytochemistry. 2002;61(2):149-155.12169308
13. Muhammad I, Zhao J, Dunbar DC, Khan IA. Constituents of Lepidium meyenii 'maca'. Phytochemistry. 2002;59(1):105-110.11754952
14. Valentová K, Buckiová D, Kren V, Peknicová J, Ulrichová J, Simánek V. The in vitro biological activity of Lepidium meyenii extracts. Cell Biol Toxicol. 2006;22(2):91-99.16528448
15. Daxenbichler M, et al. Oxazolidinethiones and volatile isothiocyanates in enzyme-treated seed meals for 65 species of Cruciferae. J Agric Food Chem. 1964;12(2):127.
16. Hecht SS. Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen metabolism. J Nutr. 1999;129(3):768S-774S.10082787
17. Bahroun A, et al. Contribution to the study of Lepidium sativum (Cruciferae). Structure of a new compound isolated from the seed: lepidine. J Soc Chim Tunis. 1985;2:15.
18. Hyun JW, Shin JE, Lim KH, et al. Evomonoside: the cytotoxic cardiac glycoside from Lepidium apetalum. Planta Med. 1995;61(3):294-295.7617779
19. Fursa M, Litvinenko VI. Chemical study of flavonol-3, 7-diglycoside of Lepidium perfoliatum L [in Ukranian]. Farm Zh. 1970;25(4):83-84.5488001
20. Zheng BL, He K, Kim CH, et al. Effect of a lipidic extract from Lepidium meyenii on sexual behavior in mice and rats. Urology. 2000;55(4):598-602.10736519
21. Cicero AF, Piacente S, Plaza A, Sala E, Arletti R, Pizza C. Hexanic Maca extract improves rat sexual performance more effectively than methanolic and chloroformic Maca extracts. Andrologia. 2002;34(3):177-179.12059814
22. Lentz A, Gravitt K, Carson CC, Marson L. Acute and chronic dosing of Lepidium meyenii (maca) on male rat sexual behavior. J Sex Med. 2007;4(2):332-339.17367428
23. Gonzales GF, Córdova A, Vega K, et al. Effect of Lepidium meyenii (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men. Andrologia. 2002;34(6):367-372.12472620
24. Zenico T, Cicero AF, Valmorri L, etal. Subjective effects of Lepidium meyenii (Maca) extract on well-being and sexual performances in patients with mild erectile dysfunction: a randomised, double-blind clinical trial. Andrologia. 2009;41(2):95-99.19260845
25. Dording CM, Fisher L, Papakostas G, et al. A double-blind, randomized, pilot dose-finding study of maca root (L. meyenii) for the management of SSRI-induced sexual dysfunction. CNS Neurosci Ther. 2008;14(3):182-191.18801111
26. Brooks NA, Wilcox G, Walker KZ, et al. Beneficial effects of Lepidium meyenii (Maca) on psychological symptoms and measures of sexual dysfunction in postmenopausal women are not related to estrogen or androgen content. Menopause. 2008;15(6):1157-1162.18784609
27. Stojanovska L, Law C, Lai B, et al. Maca reduces blood pressure and depression, in a pilot study in postmenopausal women. Climacteric. 2015;18(1):69-78.24931003
28. Oshima M, Gu Y, Tsukada S. Effects of Lepidium meyenii Walp and Jatropha macrantha on blood levels of estradiol-17 beta, progesterone, testosterone and the rate of embryo implantation in mice. J Vet Med Sci. 2003;65(10):1145-1146.14600359
29. Gonzales GF, Gasco M, Cordova A, Chung A, Rubio J, Villegas L. Effect of Lepidium meyenii (maca) on spermatogenesis in male rats acutely exposed to high altitude (4340 m). J Endocrinol. 2004;180(1):87-95.14709147
30. Gonzales GF, Ruiz A, Gonzales C, Villegas L, Cordova A. Effect of Lepidium meyenii (maca) roots on spermatogenesis of male rats. Asian J Androl. 2001;3(3):231-233.11561196
31. Gonzales GF, Nieto J, Rubio J, Gasco M. Effect of Black maca (Lepidium meyenii) on one spermatogenic cycle in rats. Andrologia. 2006;38(5):166-172.16961569
32. Ruiz-Luna AC, Salazar S, Aspajo NJ, Rubio J, Gasco M, Gonzales GF. Lepidium meyenii (maca) increases litter size in normal adult female mice. Reprod Biol Endocrinol. 2005;3:16.15869705
33. Gonzales GF, Cordova A, Gonzales C, Chung A, Vega K, Villena A. Lepidium meyenii (maca) improved semen parameters in adult men. Asian J Androl. 2001;3(4):301-303.11753476
34. Gonzales GF, Córdova A, Vega K, Chung A, Villena A, Góñez C. Effect of Lepidium meyenii (maca), a root with aphrodisiac and fertility-enhancing properties, on serum reproductive hormone levels in adult healthy men. J Endocrinol. 2003;176(1):163-168.12525260
35. Sandoval M, Okuhama NN, Angeles FM, et al. Antioxidant activity of the cruciferous vegetable maca (Lepidium meyenii ). Food Chem. 2002;79(2):207-213.
36. Vecera R, Orolin J, Skottová N, et al. The influence of maca (Lepidium meyenii ) on antioxidant status, lipid and glucose metabolism in rat. Plant Foods Hum Nutr. 2007;62(2):59-63.17333395
37. Gonzales GF, Gasco M, Lozada-Requena I. Role of maca (Lepidium meyenii) consumption on serum interleukin-6 levels and health status in populations living in the Peruvian Central Andes over 4000 m of altitude. Plant Foods Hum Nutr. 2013;68(4):347-351.23934543
38. Del Valle Mendoza J, Pumarola T, Gonzales LA, Del Valle LJ. Antiviral activity of maca (Lepidium meyenii) against human influenza virus. Asian Pac J Trop Med. 2014;7S1:S415-S420.25312160
39. Rubio J, Caldas M, Davila S, Gasco M, Gonzales GF. Effect of three different cultivars of Lepidium meyenii (maca) on learning and depression in ovariectomized mice. BMC Complement Altern Med. 2006;6:23.
40. Rubio J, Dang H, Gong M, Liu X, Chen SL, Gonzales GF. Aqueous and hydroalcoholic extracts of black maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice. Food Chem Toxicol. 2007;45(10):1882-1890.24730393
41. Ai Z, Cheng AF, Yu YT, Yu LJ, Jin W. Antidepressant-like behavioral, anatomical, and biochemical effects of petroleum ether extract from maca (Lepidium meyenii) in mice exposed to chronic unpredictable mild stress. J Med Food. 2014;17(5):535-542.24730393
42. Zhang Y, Yu L, Ao M, Jin W. Effect of ethanol extract of Lepidium meyenii Walp. on osteoporosis in ovariectomized rat. J Ethnopharmacol. 2006;105(1-2):274-279.
43. Gonzales GF, Miranda S, Nieto J, et al. Red maca (Lepidium meyenii) reduced prostate size in rats. Reprod Biol Endocrinol. 2005;3:5.
44. Gonzales GF, Vasquez V, Rodriguez D, et al. Effect of two different extracts of red maca in male rats with testosterone-induced prostatic hyperplasia. Asian J Androl. 2007;9(2):245-251.17334591
45. Gasco M, Villegas L, Yucra S, Rubio J, Gonzales GF. Dose-response effect of red maca (Lepidium meyenii) on benign prostatic hyperplasia induced by testosterone enanthate. Phytomedicine. 2007;14(7-8):460-464.17289361
46. Rubio J, Riqueros MI, Gasco M, Yucra S, Miranda S, Gonzales GF. Lepidium meyenii (maca) reversed the lead acetate induced—damage on reproductive function in male rats. Food Chem Toxicol. 2006;44(7):1114-1122.16510228
47. Bustos-Obregon E, Yucra S, Gonzales GF. Lepidium meyenii (maca) reduces spermatogenic damage induced by a single dose of malathion in mice. Asian J Androl. 2005;7(1):71-76.15685355
48. Valerio LG Jr, Gonzales GF. Toxicological aspects of the South American herbs cat's claw (Uncaria tomentosa ) and maca (Lepidium meyenii): a critical synopsis. Toxicol Rev. 2005;24(1):11-35.16042502
49. Chung F, Rubio J, Gonzales C, Gasco M, Gonzales GF. Dose-response effects of Lepidium meyenii (maca) aqueous extract on testicular function and weight of different organs in adult rats. J Ethnopharmacol. 2005;98(1-2):143-147.15763375
50. Vohora SB, Khan MS. Pharmacological studies on Lepidium sativum, linn. Indian J Physiol Pharmacol. 1977;21(2):118-120.885595
51. Ramos Ruiz A, De la Torre RA, Alonso N, Villaescusa A, Betancourt J, Vizoso A. Screening of medicinal plants for induction of somatic segregation activity in Aspergillius nidulans. J Ethnopharmacol. 1996;52(3):123-127.8771452

Disclaimer

This information relates to an herbal, vitamin, mineral or other dietary supplement. This product has not been reviewed by the FDA to determine whether it is safe or effective and is not subject to the quality standards and safety information collection standards that are applicable to most prescription drugs. This information should not be used to decide whether or not to take this product. This information does not endorse this product as safe, effective, or approved for treating any patient or health condition. This is only a brief summary of general information about this product. It does NOT include all information about the possible uses, directions, warnings, precautions, interactions, adverse effects, or risks that may apply to this product. This information is not specific medical advice and does not replace information you receive from your health care provider. You should talk with your health care provider for complete information about the risks and benefits of using this product.

This product may adversely interact with certain health and medical conditions, other prescription and over-the-counter drugs, foods, or other dietary supplements. This product may be unsafe when used before surgery or other medical procedures. It is important to fully inform your doctor about the herbal, vitamins, mineral or any other supplements you are taking before any kind of surgery or medical procedure. With the exception of certain products that are generally recognized as safe in normal quantities, including use of folic acid and prenatal vitamins during pregnancy, this product has not been sufficiently studied to determine whether it is safe to use during pregnancy or nursing or by persons younger than 2 years of age.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.

More about maca

Consumer resources

Related treatment guides

Hide