Skip to main content

Drug Interaction Report

8 potential interactions and/or warnings found for the following 2 drugs:

Filter by interaction and/or warning

Interactions between your drugs

Major

ritonavir elacestrant

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir disoproxil, elacestrant

GENERALLY AVOID: Coadministration with potent or moderate inhibitors of CYP450 3A4 may significantly increase the plasma concentrations of elacestrant, which is primarily metabolized by the isoenzyme. When elacestrant (172 mg once daily) was administered with itraconazole, a potent CYP450 3A4 inhibitor, elacestrant peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 4.4-fold and 5.3-fold, respectively. Concomitant use of fluconazole, a moderate CYP450 3A4 inhibitor, is predicted to increase elacestrant (345 mg single dose) Cmax and AUC by 1.6-fold and 2.3-fold, respectively. Increased exposure to elacestrant may increase the risk of adverse reactions such as musculoskeletal pain, nausea, dyslipidemia, increased liver enzymes, fatigue, decreased hemoglobin, and vomiting.

MANAGEMENT: Coadministration of elacestrant with potent or moderate CYP450 3A4 inhibitors should be generally avoided. However, if a potent or moderate CYP450 3A4 inhibitor must be used, some authorities recommend the following dose adjustments for elacestrant: For concomitant use with potent CYP450 3A4 inhibitors, the elacestrant dose should be reduced to 86 mg once daily and for concomitant use with moderate CYP450 3A4 inhibitors, the elacestrant dose should be reduced to 172 mg once daily. Patient tolerability should be assessed throughout treatment and a subsequent dose reduction of elacestrant to 86 mg once daily may be considered with moderate CYP450 3A4 inhibitors. If the CYP450 3A4 inhibitor is discontinued, elacestrant should be increased to its prior dose after 5 half- lives of the CYP450 3A4 inhibitor.

References (2)
  1. (2023) "Product Information. Orserdu (elacestrant)." Stemline Therapeutics
  2. (2024) "Product Information. Korserdu (elacestrant)." Menarini Stemline UK Ltd
Moderate

ritonavir tenofovir

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir disoproxil, emtricitabine / lopinavir / ritonavir / tenofovir disoproxil

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References (8)
  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
Moderate

lopinavir tenofovir

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir disoproxil, emtricitabine / lopinavir / ritonavir / tenofovir disoproxil

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References (8)
  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
Moderate

tenofovir elacestrant

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir disoproxil, elacestrant

MONITOR: Coadministration with elacestrant may increase the plasma concentrations of drugs that are substrates of P-glycoprotein (P-gp) and/or breast cancer resistance protein (BCRP). When the P-gp substrate digoxin was administered with elacestrant (345 mg single dose), digoxin peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 1.3-fold and 1.1-fold, respectively. The Cmax and AUC of rosuvastatin, a BCRP substrate, increased by 1.5-fold and 1.2-fold, respectively, when administered with the same dose of elacestrant. Adverse reactions associated with P-gp and BCRP substrates may be increased.

MANAGEMENT: Caution is advised if elacestrant is coadministered with substrates of P-gp and/or BCRP, particularly sensitive substrates or those with a narrow therapeutic range. The prescribing information for concomitant medications should be consulted to assess the benefits versus risks of coadministration and for any dosage adjustments that may be required.

References (2)
  1. (2023) "Product Information. Orserdu (elacestrant)." Stemline Therapeutics
  2. (2024) "Product Information. Korserdu (elacestrant)." Menarini Stemline UK Ltd

Drug and food interactions

Major

elacestrant food

Applies to: elacestrant

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of elacestrant, which is primarily metabolized by CYP450 3A4. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported for other CYP450 3A4 inhibitors. When elacestrant (172 mg once daily) was administered with itraconazole, a potent CYP450 3A4 inhibitor, elacestrant peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 4.4-fold and 5.3-fold, respectively. Concomitant use of fluconazole, a moderate CYP450 3A4 inhibitor, is predicted to increase elacestrant (345 mg single dose) Cmax and AUC by 1.6-fold and 2.3-fold, respectively. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to elacestrant may increase the risk of adverse reactions such as musculoskeletal pain, nausea, dyslipidemia, increased liver enzymes, fatigue, decreased hemoglobin, and vomiting.

Administration of elacestrant (345 mg) with a high-fat meal (800 to 1000 calories, 50% fat) increased elacestrant Cmax and AUC by 42% and 22%, respectively, compared to fasted conditions.

MANAGEMENT: It may be advisable for patients to avoid consumption of grapefruit, grapefruit juice, or supplements that contain grapefruit during treatment with elacestrant. Elacestrant should be taken with food at approximately the same time each day.

References (1)
  1. (2023) "Product Information. Orserdu (elacestrant)." Stemline Therapeutics
Moderate

ritonavir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir disoproxil

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References (1)
  1. (2001) "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical
Moderate

lopinavir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir disoproxil

ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.

MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.

References (1)
  1. (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical
Minor

tenofovir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir disoproxil

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References (1)
  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences

Therapeutic duplication warnings

No duplication warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

See also:

Learn more

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.