Drug Interaction Report
5 potential interactions and/or warnings found for the following 2 drugs:
- latanoprost / timolol ophthalmic
- Theraflu Warming Relief Sinus & Cold (acetaminophen / diphenhydramine / phenylephrine)
Interactions between your drugs
diphenhydrAMINE timolol ophthalmic
Applies to: Theraflu Warming Relief Sinus & Cold (acetaminophen / diphenhydramine / phenylephrine), latanoprost / timolol ophthalmic
MONITOR: Coadministration with inhibitors of CYP450 2D6 may increase the systemic effects of topically administered timolol, which is metabolized by the isoenzyme. Following ocular administration, timolol is systemically absorbed and can reach plasma levels associated with adverse beta-adrenergic blocking effects such as bronchospasm, depression, bradycardia, and hypotension. The risk may be increased if clearance of the drug is significantly diminished by concomitant CYP450 2D6 inhibitors. In one case report, a 70-year-old man experienced dizziness secondary to sinus bradycardia after 12 weeks of treatment with a 0.5% timolol eye drop while also taking quinidine sulfate 500 mg three times a day. The symptoms subsided and sinus rhythm returned to normal a day after discontinuation of both drugs. However, symptoms returned within 30 hours after restarting both drugs a month later. Quinidine was discontinued, and the patient did not experience further problems. In a study of 13 healthy volunteers, extensive metabolizers of CYP450 2D6 administered quinidine (50 mg single oral dose) 30 minutes before 0.5% timolol eye drop (2 drops in each nostril) demonstrated significantly greater reductions in exercise heart rate and had higher plasma timolol concentrations than when given timolol alone. The changes resulted in values that were similar to those observed in poor metabolizers given the timolol eye drop without quinidine. In another study, 12 healthy volunteers given cimetidine (400 mg orally twice a day for 7 doses) and 0.5% timolol eye drop (0.05 mL in each eye 30 minutes after last dose of cimetidine) demonstrated additional reductions in resting heart rate and intraocular pressure relative to administration of the timolol eye drop alone, although there were no additional reductions of exercise heart rate or systolic blood pressure (at rest or after exercise) compared to timolol alone.
MANAGEMENT: Patients should be monitored for systemic beta-adrenergic blocking effects of topical timolol during coadministration with CYP450 2D6 inhibitors such as cimetidine, quinidine, and certain selective serotonin reuptake inhibitors. Particular caution is warranted in elderly patients, since they are generally more susceptible to adverse effects of topically administered beta blockers.
References
- Dinai Y, Sharir M, Floman NN, Halkin H (1985) "Bradycardia induced by interaction between quinidine and ophthalmic timolol." Ann Intern Med, 103, p. 890-1
- Lewis RV, Lennard MS, Jackson PR, Tucker GT, Ramsay LE, Woods HF (1985) "Timolol and atenolol: relationships between oxidation phenotype, pharmacokinetics and pharmacodynamics." Br J Clin Pharmacol, 19, p. 329-33
- Alvan G, Calissendorff B, Seideman P, Widmark K, Widmark G (1980) "Absorption of ocular timolol." Clin Pharmacokinet, 5, p. 95-100
- Edeki TI, He HB, Wood AJJ (1995) "Pharmacogenetic explanation for excessive beta-blockade following timolol eye drops: potential for oral-ophthalmic drug interaction." JAMA, 274, p. 1611-3
- Higginbotham E (1996) "Topical beta-adrenergic antagonists and quinidine: a risky interaction." Arch Ophthalmol, 114, p. 745-6
- Ishii Y, Nakamura K, Tsutsumi K, Kotegawa T, Nakano S, Nakatsuka K (2000) "Drug interaction between cimetidine and timolol ophthalmic solution: Effect on heart rate and intraocular pressure in healthy Japanese volunteers." J Clin Pharmacol, 40, p. 193-9
- Fraunfelder FT, Fraunfelder FW; Randall JA (2001) "Drug-Induced Ocular Side Effects" Boston, MA: Butterworth-Heinemann
phenylephrine timolol ophthalmic
Applies to: Theraflu Warming Relief Sinus & Cold (acetaminophen / diphenhydramine / phenylephrine), latanoprost / timolol ophthalmic
MONITOR: A case report suggests that beta-blockers may enhance the pressor response to phenylephrine. The proposed mechanism involves blockade of beta-2 adrenergic receptors in the peripheral vasculature, resulting in unopposed alpha-adrenergic effect of phenylephrine that is responsible for vasoconstriction. Additionally, beta-blockers may desensitize baroreceptors that normally modulate heart rate in response to blood pressure elevations by increasing vagal activity on the sinoauricular node. In the case report, a woman with a history of hypertension treated with hydrochlorothiazide (50 mg twice a day) and propranolol (40 mg four times a day) developed sudden bitemporal pain and became unconscious shortly after she was given one drop of a 10% phenylephrine solution in each eye during an ophthalmic examination. She subsequently died of intracerebral hemorrhage due to rupture of a berry aneurysm. The authors noted that the patient had received the same eye drop without incident on two previous occasions when she was not receiving blood pressure or other medications. Nevertheless, an interaction between phenylephrine and beta-blockers is not well established. Phenylephrine acts predominantly on alpha-adrenergic receptors and has little or no direct effect on beta-2 adrenergic receptors, although it may affect them indirectly by enhancing release of norepinephrine from adrenergic nerve terminals. In a study of 12 patients with hypertension, mean phenylephrine doses required to increase systolic blood pressure by 25 mmHg were not significantly different following 2 weeks on propranolol, metoprolol, and placebo (4.8 mcg/kg, 4.7 mcg/kg, and 5.3 mcg/kg, respectively). Baroreceptor-mediated decreases in heart rate during phenylephrine infusion were also in the same range on propranolol, metoprolol, and placebo over baseline heart rate values. In another study, no changes in blood pressure or heart rate were observed in hypertensive patients treated with metoprolol who were given 0.5 to 4 mg doses of phenylephrine intranasally every hour up to a total of 7.5 to 15 mg, or 4 to 30 times the usual recommended dose, compared to placebo or baseline values. These results support the lack of a significant interaction between beta-blockers and phenylephrine.
MANAGEMENT: Until more information is available, caution should be exercised when phenylephrine is used in combination with beta-blockers including ophthalmic formulations, which may be systemically absorbed and can produce clinically significant systemic effects even at low or undetectable plasma levels. Monitoring of blood pressure should be considered, particularly when phenylephrine is administered intravenously or intraocularly. Although an interaction is not likely to occur with cardioselective beta-blockers, caution may be advisable when high dosages are used, since cardioselectivity is not absolute and may be lost with larger doses. A beta-blocker such as propranolol may be used to treat cardiac arrhythmias that occur during administration of phenylephrine.
References
- Cass E, Kadar D, Stein HA (1979) "Hazards of phenylephrine topical medication in persons taking propranolol." Can Med Assoc J, 120, p. 1261-2
- Myers MG, Iazzetta JJ (1982) "Intranasally administered phenylephrine and blood pressure." Can Med Assoc J, 127, p. 365-6
Drug and food interactions
acetaminophen food
Applies to: Theraflu Warming Relief Sinus & Cold (acetaminophen / diphenhydramine / phenylephrine)
GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.
MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).
References
- Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
- O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
- Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
- Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
- McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
- Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
- Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
- (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
- Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
- Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
diphenhydrAMINE food
Applies to: Theraflu Warming Relief Sinus & Cold (acetaminophen / diphenhydramine / phenylephrine)
GENERALLY AVOID: Use of anticholinergic agents with alcohol may result in sufficient impairment of attention so as to render driving and operating machinery more hazardous. In addition, the potential for abuse may be increased with the combination. The mechanism of interaction is not established but may involve additive depressant effects on the central nervous system. No effect of oral propantheline or atropine on blood alcohol levels was observed in healthy volunteers when administered before ingestion of a standard ethanol load. However, one study found impairment of attention in subjects given atropine 0.5 mg or glycopyrrolate 1 mg in combination with alcohol.
MANAGEMENT: Alcohol should generally be avoided during therapy with anticholinergic agents. Patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them.
References
- Linnoila M (1973) "Drug effects on psychomotor skills related to driving: interaction of atropine, glycopyrrhonium and alcohol." Eur J Clin Pharmacol, 6, p. 107-12
phenylephrine food
Applies to: Theraflu Warming Relief Sinus & Cold (acetaminophen / diphenhydramine / phenylephrine)
MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.
MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.
References
- Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
- Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
- (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
- (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
- (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
- (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
- (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
Therapeutic duplication warnings
No duplication warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Learn more
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.