Skip to main content

Drug Interaction Report

19 potential interactions and/or warnings found for the following 6 drugs:

Filter by interaction and/or warning

Interactions between your drugs

Major

amitriptyline FLUoxetine

Applies to: amitriptyline, Prozac (fluoxetine)

GENERALLY AVOID: Coadministration with fluoxetine may significantly increase the plasma concentrations of some tricyclic antidepressants (TCAs). The proposed mechanism is fluoxetine inhibition of CYP450 2D6, the isoenzyme responsible for the metabolic clearance of many antidepressant and psychotropic drugs. Seizures and delirium have been reported, as well as a fatality attributed to fluoxetine-induced chronic amitriptyline toxicity. Pharmacodynamically, the combination of fluoxetine (or any other selective serotonin reuptake inhibitor) and a TCA may potentiate the risk of serotonin syndrome, which is a rare but serious and potentially fatal condition thought to result from hyperstimulation of brainstem 5HT1A receptors.

MANAGEMENT: In general, the use of fluoxetine (or other SSRIs) with TCAs should be avoided if possible, or otherwise approached with caution if potential benefit is deemed to outweigh the risk. Pharmacologic response and plasma TCA levels should be monitored more closely whenever fluoxetine is added to or withdrawn from therapy in patients stabilized on their existing antidepressant regimen, and the TCA dosage adjusted as necessary. Patients should be monitored closely for signs and symptoms of TCA toxicity (e.g., sedation, dry mouth, blurred vision, constipation, urinary retention) and/or excessive serotonergic activity (e.g., CNS irritability, altered consciousness, confusion, myoclonus, ataxia, abdominal cramping, hyperpyrexia, shivering, pupillary dilation, diaphoresis, hypertension, and tachycardia). Due to the long half-life of fluoxetine and its active metabolite, norfluoxetine, the risk of interaction may persist for several weeks after discontinuation of fluoxetine. For this reason, some authorities recommend a washout period of two to five weeks before and after treatment with fluoxetine.

References

  1. Muller N, Brockmoller J, Roots I (1991) "Extremely long plasma half-life of amitriptyline in a woman with the cytochrome P450IID6 29/29-kilobase wild-type allele: a slowly reversible interaction with fluoxetine." Ther Drug Monit, 13, p. 533-6
  2. Bergstrom RF, Peyton AL, Lemberger L (1992) "Quantification and mechanism of the fluoxetine and tricyclic antidepressant interaction." Clin Pharmacol Ther, 51, p. 239-48
  3. Nierenberg DW, Semprebon M (1993) "The central nervous system serotonin syndrome." Clin Pharmacol Ther, 53, p. 84-8
  4. Bell IR, Cole JO (1988) "Fluoxetine induces elevation of desipramine level and exacerbation of geriatric nonpsychotic depression." J Clin Psychopharmacol, 8, p. 447-8
  5. Aranow AB, Hudson JI, Pope HG, et al. (1989) "Elevated antidepressant plasma levels after addition of fluoxetine." Am J Psychiatry, 146, p. 911-3
  6. Preskorn SH, Beber JH, Faul JC, Hirschfeld RM (1990) "Serious adverse effects of combining fluoxetine and tricyclic antidepressants." Am J Psychiatry, 147, p. 532
  7. Vandel S, Bertschy G, Bonin B, et al. (1992) "Tricyclic antidepressant plasma levels after fluoxetine." Neuropsychobiology, 25, p. 202-7
  8. Sternbach H (1991) "The serotonin syndrome." Am J Psychiatry, 148, p. 705-13
  9. Downs JM, Dahmer SK (1990) "Fluoxetine and elevated plasma levels of tricyclic antidepressants." Am J Psychiatry, 147, p. 1251
  10. Schraml F, Benedetti G, Hoyle K, Clayton A (1989) "Fluoxetine and nortriptyline combination therapy." Am J Psychiatry, 146, p. 1636-7
  11. Downs JM, Downs AD (1989) "Effect of fluoxetine on metabolism of tricyclic antidepressants in the lungs." Am J Psychiatry, 146, p. 814-5
  12. Ciraulo DA, Shader RI (1990) "Fluoxetine drug-drug interactions. II." J Clin Psychopharmacol, 10, p. 213-7
  13. Ciraulo DA, Shader RI (1990) "Fluoxetine drug-drug interactions: I. Antidepressants and antipsychotics." J Clin Psychopharmacol, 10, p. 48-50
  14. Vaughan DA (1988) "Interaction of fluoxetine with tricyclic antidepressants." Am J Psychiatry, 145, p. 1478
  15. Wilens TE, Biederman J, Baldessarini RJ, McDermott SP, Puopolo PR, Flood JG (1992) "Fluoxetine inhibits desipramine metabolism." Arch Gen Psychiatry, 49, p. 752
  16. DeMaso DR, Hunter TA (1990) "Combining fluoxetine with desipramine." J Am Acad Child Adolesc Psychiatry, 29, p. 151
  17. Westermeyer J (1991) "Fluoxetine-induced tricyclic toxicity: extent and duration." J Clin Pharmacol, 31, p. 388-92
  18. von Ammon Cavanaugh S (1990) "Drug-drug interactions of fluoxetine with tricyclics." Psychosomatics, 31, p. 273-6
  19. Gillman PK (1993) "Fluoxetine (prozac)." Med J Aust, 159, p. 492
  20. Preskorn SH, Alderman J, Chung M, Harrison W, Messig M, Harris S (1994) "Pharmacokinetics of desipramine coadministered with sertraline or fluoxetine." J Clin Psychopharmacol, 14, p. 90-8
  21. von Moltke LL, Greenblatt DJ, Cotreau-Bibbo MM, Duan SX, Harmatz JS, Shader RI (1994) "Inhibition of desipramine hydroxylation in vitro by serotonin-reuptake-inhibitor antidepressants, and by quinidine and ketoconazole: a model system to predict drug interactions in vivo." J Pharmacol Exp Ther, 268, p. 1278-83
  22. (2001) "Product Information. Anafranil (clomipramine)." Basel Pharmaceuticals
  23. Popli AP, Baldessarini RJ, Cole JO (1994) "Interactions of serotonin reuptake inhibitors with tricyclic antidepressants." Arch Gen Psychiatry, 51, p. 666-7
  24. Crewe HK, Lennard MS, Tucker GT, Woods FR, Haddock RE (1992) "The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes." Br J Clin Pharmacol, 34, p. 262-5
  25. Elyazigi A, Chaleby K, Gad A, Raines DA (1995) "Steady-state kinetics of fluoxetine and amitriptyline in patients treated with a combination of these drugs as compared with those treated with amitriptyline alone." J Clin Pharmacol, 35, p. 17-21
  26. Sternbach H (1995) "Fluoxetine-clomipramine interaction." J Clin Psychiatry, 56, p. 171-2
  27. Harvey AT, Preskorn SH (1995) "Interactions of serotonin reuptake inhibitors with tricyclic antidepressants." Arch Gen Psychiatry, 52, p. 783-4
  28. Taylor D (1995) "Selective serotonin reuptake inhibitors and tricyclic antidepressants in combination - interactions and therapeutic uses." Br J Psychiatry, 167, p. 575-80
  29. Riesenman C (1995) "Antidepressant drug interactions and the cytochrome p450 system: a critical appraisal." Pharmacotherapy, 15, s84-99
  30. Fischer P (1995) "Serotonin syndrome in the elderly after antidepressive monotherapy." J Clin Psychopharmacol, 15, p. 440-2
  31. Corkeron MA (1995) "Serotonin syndrome - a potentially fatal complication of antidepressant therapy." Med J Aust, 163, p. 481-2
  32. Leroi I, Walentynowicz MA (1996) "Fluoxetine-imipramine interaction." Can J Psychiatry, 41, p. 318-9
  33. Preskorn SH, Baker B (1997) "Fatality associated with combined fluoxetine-amitryptyline therapy." JAMA, 277, p. 1682
  34. Paul KL, Bhatara VS (1997) "Anticholinergic delerium possibly associated with protriptyline and fluoxetine." Ann Pharmacother, 31, p. 1260-1
  35. Mills KC (1997) "Serotonin syndrome: A clinical update." Crit Care Clin, 13, p. 763
  36. Mathew NT, Tietjen GE, Lucker C (1996) "Serotonin syndrome complicating migraine pharmacotherapy." Cephalalgia, 16, p. 323-7
  37. Nijhawan PK, Katz G, Winter S (1996) "Psychiatric illness and the serotonin syndrome: an emerging adverse drug effect leading to intensive care unit admission." Crit Care Med, 24, p. 1086-9
  38. Laird LK (1996) "Issues in the monopharmacotherapy and polypharmacotherapy of obsessive-compulsive disorder." Psychopharmacol Bull, 32, p. 569-78
  39. Ereshefsky L, Riesemman C, Lam YW (1995) "Antidepressant drug interactions and the cytochrome P450 system. The role of cytochrome P450 2D6." Clin Pharmacokinet, 29(Suppl 1), 10-8; discussion 18-9
  40. Martin TG (1996) "Serotonin syndrome." Ann Emerg Med, 28, p. 520-6
  41. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  42. Cerner Multum, Inc. "Australian Product Information."
View all 42 references

Switch to consumer interaction data

Major

amitriptyline 5-hydroxytryptophan

Applies to: amitriptyline, 5-HTP (5-hydroxytryptophan)

MONITOR CLOSELY: Concomitant use of agents with serotonergic activity such as serotonin reuptake inhibitors, monoamine oxidase inhibitors, tricyclic antidepressants, 5-HT1 receptor agonists, ergot alkaloids, cyclobenzaprine, lithium, St. John's wort, phenylpiperidine opioids, dextromethorphan, and tryptophan may potentiate the risk of serotonin syndrome, which is a rare but serious and potentially fatal condition thought to result from hyperstimulation of brainstem 5-HT1A and 2A receptors. Symptoms of the serotonin syndrome may include mental status changes such as irritability, altered consciousness, confusion, hallucination, and coma; autonomic dysfunction such as tachycardia, hyperthermia, diaphoresis, shivering, blood pressure lability, and mydriasis; neuromuscular abnormalities such as hyperreflexia, myoclonus, tremor, rigidity, and ataxia; and gastrointestinal symptoms such as abdominal cramping, nausea, vomiting, and diarrhea.

MANAGEMENT: In general, the concomitant use of multiple serotonergic agents should be avoided if possible, or otherwise approached with caution if potential benefit is deemed to outweigh the risk. Patients should be closely monitored for symptoms of the serotonin syndrome during treatment. Particular caution is advised when increasing the dosages of these agents. The potential risk for serotonin syndrome should be considered even when administering serotonergic agents sequentially, as some agents may demonstrate a prolonged elimination half-life. For example, some experts suggest a 5-week washout period following use of fluoxetine and 3 weeks following the use of vortioxetine before administering another serotonergic agent. Individual product labeling for washout periods should be consulted for current recommendations. If serotonin syndrome develops or is suspected during the course of therapy, all serotonergic agents should be discontinued immediately and supportive care rendered as necessary. Moderately ill patients may also benefit from the administration of a serotonin antagonist (e.g., cyproheptadine, chlorpromazine). Severe cases should be managed under consultation with a toxicologist and may require sedation, neuromuscular paralysis, intubation, and mechanical ventilation in addition to the other measures.

References

  1. Hansen TE, Dieter K, Keepers GA (1990) "Interaction of fluoxetine and pentazocine." Am J Psychiatry, 147, p. 949-50
  2. Achamallah NS (1992) "Visual hallucinations after combining fluoxetine and dextromethorphan ." Am J Psychiatry, 149, p. 1406
  3. Nierenberg DW, Semprebon M (1993) "The central nervous system serotonin syndrome." Clin Pharmacol Ther, 53, p. 84-8
  4. Metz A (1990) "Interaction between fluoxetine and buspirone." Can J Psychiatry, 35, p. 722-3
  5. Goldberg RJ, Huk M (1992) "Serotonin syndrome from trazodone and buspirone." Psychosomatics, 33, p. 235-6
  6. (2002) "Product Information. D.H.E. 45 (dihydroergotamine)." Sandoz Pharmaceuticals Corporation
  7. Sternbach H (1991) "The serotonin syndrome." Am J Psychiatry, 148, p. 705-13
  8. Ciraulo DA, Shader RI (1990) "Fluoxetine drug-drug interactions. II." J Clin Psychopharmacol, 10, p. 213-7
  9. Ciraulo DA, Shader RI (1990) "Fluoxetine drug-drug interactions: I. Antidepressants and antipsychotics." J Clin Psychopharmacol, 10, p. 48-50
  10. (2001) "Product Information. Zoloft (sertraline)." Roerig Division
  11. (2001) "Product Information. Prozac (fluoxetine)." Dista Products Company
  12. Noble WH, Baker A (1992) "MAO inhibitors and coronary artery surgery: a patient death." Can J Anaesth, 39, p. 1061-6
  13. Insel TR, Roy BF, Cohen RM, Murphy DL (1982) "Possible development of the serotonin syndrome in man." Am J Psychiatry, 139, p. 954-5
  14. (2001) "Product Information. Effexor (venlafaxine)." Wyeth-Ayerst Laboratories
  15. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  16. (2001) "Product Information. Paxil (paroxetine)." GlaxoSmithKline
  17. (2001) "Product Information. Flexeril (cyclobenzaprine)." Merck & Co., Inc
  18. Insler SR, Kraenzler EJ, Licina MG, Savage RM, Starr NJ (1994) "Cardiac surgery in a patient taking monoamine oxidase inhibitors - an adverse fentanyl reaction." Anesth Analg, 78, p. 593-7
  19. (2001) "Product Information. Imitrex (sumatriptan)." Glaxo Wellcome
  20. Ruiz F (1994) "Fluoxetine and the serotonin syndrome." Ann Emerg Med, 24, p. 983-5
  21. (2001) "Product Information. Luvox (fluvoxamine)." Solvay Pharmaceuticals Inc
  22. Reeves RR, Bullen JA (1995) "Serotonin syndrome produced by paroxetine and low-dose trazodone." Psychosomatics, 36, p. 159-60
  23. Harvey AT, Preskorn SH (1995) "Interactions of serotonin reuptake inhibitors with tricyclic antidepressants." Arch Gen Psychiatry, 52, p. 783-4
  24. Baetz M, Malcolm D (1995) "Serotonin syndrome from fluvoxamine and buspirone." Can J Psychiatry, 40, p. 428-9
  25. Fischer P (1995) "Serotonin syndrome in the elderly after antidepressive monotherapy." J Clin Psychopharmacol, 15, p. 440-2
  26. Corkeron MA (1995) "Serotonin syndrome - a potentially fatal complication of antidepressant therapy." Med J Aust, 163, p. 481-2
  27. George TP, Godleski LS (1996) "Possible serotonin syndrome with trazodone addition to fluoxetine." Biol Psychiatry, 39, p. 384-5
  28. Skop BP, Finkelstein JA, Mareth TR, Magoon MR, Brown TM (1994) "The serotonin syndrome associated wtih paroxetine, an over-the-counter cold remedy, and vascular disease." Am J Emerg Med, 12, p. 642-4
  29. Mason BJ, Blackburn KH (1997) "Possible serotonin syndrome associated with tramadol and sertraline coadministration." Ann Pharmacother, 31, p. 175-7
  30. John L, Perreault MM, Tao T, Blew PG (1997) "Serotonin syndrome associated with nefazodone and paroxetine." Ann Emerg Med, 29, p. 287-9
  31. (2001) "Product Information. Zomig (zolmitriptan)." Astra-Zeneca Pharmaceuticals
  32. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  33. Mills KC (1997) "Serotonin syndrome: A clinical update." Crit Care Clin, 13, p. 763
  34. Bhatara VS, Magnus RD, Paul KL, Preskorn SH (1998) "Serotonin syndrome induced by venlafaxine and fluoxetine: a case study in polypharmacy and potential pharmacodynamic and pharmacokinetic mechanisms." Ann Pharmacother, 32, p. 432-6
  35. (2001) "Product Information. Maxalt (rizatriptan)." Merck & Co., Inc
  36. (2001) "Product Information. Celexa (citalopram)." Forest Pharmaceuticals
  37. Gardner DM, Lynd LD (1998) "Sumatriptan contraindications and the serotonin syndrome." Ann Pharmacother, 32, p. 33-8
  38. Mathew NT, Tietjen GE, Lucker C (1996) "Serotonin syndrome complicating migraine pharmacotherapy." Cephalalgia, 16, p. 323-7
  39. Chan BSH, Graudins A, Whyte IM, Dawson AH, Braitberg G, Duggin GG (1998) "Serotonin syndrome resulting from drug interactions." Med J Aust, 169, p. 523-5
  40. Egberts AC, ter Borg J, Brodie-Meijer CC (1997) "Serotonin syndrome attributed to tramadol addition to paroxetine therapy." Int Clin Psychopharmacol, 12, p. 181-2
  41. Weiner AL (1999) "Meperidine as a potential cause of serotonin syndrome in the emergency department." Acad Emerg Med, 6, p. 156-8
  42. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  43. Gordon JB (1998) "SSRI's and St. John's Wort: possible toxicity?" Am Fam Physician, 57, 950,953
  44. Lantz MS, Buchalter E, Giambanco V (1999) "St. John's wort and antidepressant drug interactions in the elderly." J Geriatr Psychiatr Neurol, 12, p. 7-10
  45. Fugh-Berman A (2000) "Herb-drug interactions." Lancet, 355, p. 134-8
  46. (2001) "Product Information. Zyvox (linezolid)." Pharmacia and Upjohn
  47. Perry NK (2000) "Venlafaxine-induced serotonin syndrome with relapse following amitriptyline." Postgrad Med J, 76, p. 254-6
  48. Manos GH (2000) "Possible serotonin syndrome associated with buspirone added to fluoxetine." Ann Pharmacother, 34, p. 871-4
  49. Nijhawan PK, Katz G, Winter S (1996) "Psychiatric illness and the serotonin syndrome: an emerging adverse drug effect leading to intensive care unit admission." Crit Care Med, 24, p. 1086-9
  50. Laird LK (1996) "Issues in the monopharmacotherapy and polypharmacotherapy of obsessive-compulsive disorder." Psychopharmacol Bull, 32, p. 569-78
  51. Margolese HC, Chouinard G (2000) "Serotonin syndrome from addition of low-dose trazodone to nefazodone." Am J Psychiatry, 157, p. 1022
  52. Mackay FJ, Dunn NR, Mann RD (1999) "Antidepressants and the serotonin syndrome in general practice." Br J Gen Pract, 49, p. 871-4
  53. Smith DL, Wenegrat BG (2000) "A case report of serotonin syndrome associated with combined nefazodone and fluoxetine." J Clin Psychiatry, 61, p. 146
  54. Rosebraugh CJ, floxkhart DA, Yasuda SU, Woosley RL (2001) "Visual hallucination and tremor induced by sertraline and oxycodone in a bone marrow transplant patient." J Clin Pharmacol, 41, p. 224-7
  55. Izzo AA, Ernst E (2001) "Interactions between herbal medicines and prescribed drugs: a systematic review." Drugs, 61, p. 2163-75
  56. Duggal HS, Fetchko J (2002) "Serotonin syndrome and atypical antipsychotics." Am J Psychiatry, 159, p. 672-3
  57. Wigen CL, Goetz MB (2002) "Serotonin syndrome and linezolid." Clin Infect Dis, 34, p. 1651-2
  58. Hammerness P, Parada H, Abrams A (2002) "Linezolid: MAOI Activity and Potential Drug Interactions." Psychosomatics, 43, p. 248-9
  59. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  60. Dougherty JA, Young H, Shafi T (2002) "Serotonin syndrome induced by amitriptyline, meperidine, and venlafaxine." Ann Pharmacother, 36, p. 1647-1648
  61. Turkel SB, Nadala JG, Wincor MZ (2001) "Possible serotonin syndrome in association with 5-HT3 antagonist agents." Psychosomatics, 42, p. 258-60
  62. Martin TG (1996) "Serotonin syndrome." Ann Emerg Med, 28, p. 520-6
  63. Lavery S, Ravi H, McDaniel WW, Pushkin YR (2001) "Linezolid and serotonin syndrome." Psychosomatics, 42, p. 432-4
  64. Lane R, Baldwin D (1997) "Selective serotonin reuptake inhibitor--induced serotonin syndrome: review." J Clin Psychopharmacol, 17, p. 208-21
  65. Bernard L, Stern R, Lew D, Hoffmeyer P (2003) "Serotonin syndrome after concomitant treatment with linezolid and citalopram." Clin Infect Dis, 36, p. 1197
  66. Dannawi M (2002) "Possible serotonin syndrome after combination of buspirone and St John's Wort." J Psychopharmacol, 16, p. 401
  67. Tissot TA (2003) "Probable meperidine-induced serotonin syndrome in a patient with a history of fluoxetine use." Anesthesiology, 98, p. 1511-1512
  68. Hachem RY, Hicks K, Huen A, Raad I (2003) "Myelosuppression and serotonin syndrome associated with concurrent use of linezolid and selective serotonin reuptake inhibitors in bone marrow transplant recipients." Clin Infect Dis, 37, E8-E11
  69. Gillman PK (2003) "Linezolid and serotonin toxicity." Clin Infect Dis, 37, p. 1274-5
  70. Roy S, Fortier LP (2003) "Fentanyl-induced rigidity during emergence from general anesthesia potentiated by venlafexine." Can J Anaesth, 50, p. 32-5
  71. Giese SY, Neborsky R (2001) "Serotonin syndrome: potential consequences of Meridia combined with Demerol or fentanyl." Plast Reconstr Surg, 107, p. 293-4
  72. Jones SL, Athan E, O'Brien D (2004) "Serotonin syndrome due to co-administration of linezolid and venlafaxine." J Antimicrob Chemother, 54, p. 289-90
  73. Tahir N (2004) "Serotonin syndrome as a consequence of drug-resistant infections: an interaction between linezolid and citalopram." J Am Med Dir Assoc, 5, p. 111-3
  74. (2004) "Product Information. Cymbalta (duloxetine)." Lilly, Eli and Company
  75. Thomas CR, Rosenberg M, Blythe V, Meyer WJ 3rd (2004) "Serotonin syndrome and linezolid." J Am Acad Child Adolesc Psychiatry, 43, p. 790
  76. Boyer EW, Shannon M (2005) "The serotonin syndrome." N Engl J Med, 352, p. 1112-20
  77. Bergeron L, Boule M, Perreault S (2005) "Serotonin toxicity associated with concomitant use of linezolid." Ann Pharmacother, 39, p. 956-61
  78. Morales N, Vermette H (2005) "Serotonin syndrome associated with linezolid treatment after discontinuation of fluoxetine." Psychosomatics, 46, p. 274-5
  79. Morales-Molina JA, Mateu-de Antonio J, Marin-Casino M, Grau S (2005) "Linezolid-associated serotonin syndrome: what we can learn from cases reported so far." J Antimicrob Chemother, 56, p. 1176-8
  80. DeBellis RJ, Schaefer OP, Liquori M, Volturo GA (2005) "Linezolid-associated serotonin syndrome after concomitant treatment with citalopram and mirtazepine in a critically ill bone marrow transplant recipient." J Intensive Care Med, 20, p. 351-3
  81. Hunter B, Kleinert MM, Osatnik J, Soria E (2006) "Serotonergic syndrome and abnormal ocular movements: worsening of rigidity by remifentanil?" Anesth Analg, 102, p. 1589
  82. Taylor JJ, Wilson JW, Estes LL (2006) "Linezolid and serotonergic drug interactions: a retrospective survey." Clin Infect Dis, 43, p. 180-7
  83. Strouse TB, Kerrihard TN, Forscher CA, Zakowski P (2006) "Serotonin syndrome precipitated by linezolid in a medically ill patient on duloxetine." J Clin Psychopharmacol, 26, p. 681-683
  84. Keegan MT, Brown DR, Rabinstein AA (2006) "Serotonin syndrome from the interaction of cyclobenzaprine with other serotoninergic drugs." Anesth Analg, 103, p. 1466-8
  85. Paruchuri P, Godkar D, Anandacoomarswamy D, Sheth K, Niranjan S (2006) "Rare case of serotonin syndrome with therapeutic doses of paroxetine." Am J Ther, 13, p. 550-552
  86. Steinberg M, Morin AK (2007) "Mild serotonin syndrome associated with concurrent linezolid and fluoxetine." Am J Health Syst Pharm, 64, p. 59-62
  87. Packer S, Berman SA (2007) "Serotonin syndrome precipitated by the monoamine oxidase inhibitor linezolid." Am J Psychiatry, 164, p. 346-7
  88. Shapiro RE, Tepper SJ (2007) "The serotonin syndrome, triptans, and the potential for drug-drug interactions." Headache, 47, p. 266-9
  89. Ailawadhi S, Sung KW, Carlson LA, Baer MR (2007) "Serotonin syndrome caused by interaction between citalopram and fentanyl." J Clin Pharm Ther, 32, p. 199-202
  90. (2008) "Product Information. Pristiq (desvenlafaxine)." Wyeth Laboratories
  91. Rang ST, Field J, Irving C (2008) "Serotonin toxicity caused by an interaction between fentanyl and paroxetine." Can J Anaesth, 55, p. 521-5
  92. (2009) "Product Information. Savella (milnacipran)." Forest Pharmaceuticals
  93. (2009) "Product Information. Nucynta (tapentadol)." PriCara Pharmaceuticals
  94. Lee J, Franz L, Goforth HW (2009) "Serotonin syndrome in a chronic-pain patient receiving concurrent methadone, ciprofloxacin, and venlafaxine." Psychosomatics, 50, p. 638-9
  95. (2011) "Product Information. Viibryd (vilazodone)." Trovis Pharmaceuticals LLC
  96. Mugele J, Nanagas KA, Tormoehlen LM (2012) "Serotonin Syndrome Associated With MDPV Use: A Case Report." Ann Emerg Med
  97. (2012) "Product Information. Oleptro (trazodone)." Labopharm Inc
  98. (2013) "Product Information. Fetzima (levomilnacipran)." Forest Pharmaceuticals
  99. (2013) "Product Information. Brintellix (vortioxetine)." Takeda Pharmaceuticals America
  100. (2023) "Product Information. Exxua (gepirone)." Mission Pharmacal Company, 1
View all 100 references

Switch to consumer interaction data

Major

FLUoxetine 5-hydroxytryptophan

Applies to: Prozac (fluoxetine), 5-HTP (5-hydroxytryptophan)

GENERALLY AVOID: Concomitant use of agents with serotonergic activity such as serotonin reuptake inhibitors and tryptophan may potentiate the risk of serotonin syndrome, which is a rare but serious and potentially fatal condition thought to result from hyperstimulation of brainstem 5-HT1A and 2A receptors. Symptoms of the serotonin syndrome may include mental status changes such as irritability, altered consciousness, confusion, hallucinations, and coma; autonomic dysfunction such as tachycardia, hyperthermia, diaphoresis, shivering, blood pressure lability, and mydriasis; neuromuscular abnormalities such as hyperreflexia, myoclonus, tremor, rigidity, and ataxia; and gastrointestinal symptoms such as abdominal cramping, nausea, vomiting, and diarrhea.

MANAGEMENT: The concomitant use of serotonin reuptake inhibitors and tryptophan should be avoided.

References

  1. (2001) "Product Information. Zoloft (sertraline)." Roerig Division
  2. (2001) "Product Information. Prozac (fluoxetine)." Dista Products Company
  3. (2001) "Product Information. Effexor (venlafaxine)." Wyeth-Ayerst Laboratories
  4. (2001) "Product Information. Paxil (paroxetine)." GlaxoSmithKline
  5. (2001) "Product Information. Luvox (fluvoxamine)." Solvay Pharmaceuticals Inc
  6. (2001) "Product Information. Celexa (citalopram)." Forest Pharmaceuticals
  7. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  8. (2004) "Product Information. Cymbalta (duloxetine)." Lilly, Eli and Company
  9. (2008) "Product Information. Pristiq (desvenlafaxine)." Wyeth Laboratories
  10. (2009) "Product Information. Savella (milnacipran)." Forest Pharmaceuticals
  11. (2009) "Product Information. Nucynta (tapentadol)." PriCara Pharmaceuticals
  12. (2011) "Product Information. Viibryd (vilazodone)." Trovis Pharmaceuticals LLC
  13. (2013) "Product Information. Fetzima (levomilnacipran)." Forest Pharmaceuticals
  14. (2013) "Product Information. Brintellix (vortioxetine)." Takeda Pharmaceuticals America
View all 14 references

Switch to consumer interaction data

Moderate

amitriptyline promethazine

Applies to: amitriptyline, promethazine

MONITOR: Coadministration of a phenothiazine with a tricyclic antidepressant (TCA) may result in elevated plasma concentrations of one or both drugs as well as additive adverse effects. Most phenothiazines and TCAs have been found to undergo metabolism by CYP450 2D6, thus competitive inhibition of the enzyme may occur when more than one of these agents are administered. Although these drugs have been used together clinically, the possibility of increased risk of serious adverse effects such as central nervous system depression, tardive dyskinesia, hypotension, and prolongation of the QT interval should be considered, as many of these agents alone can and have produced these effects. In addition, excessive anticholinergic effects may occur in combination use, which can result in paralytic ileus, hyperthermia, heat stroke, and the anticholinergic intoxication syndrome. Peripheral symptoms of anticholinergic intoxication commonly include mydriasis, blurred vision, flushed face, fever, dry skin and mucous membranes, tachycardia, urinary retention, and constipation. Central symptoms may include memory loss, disorientation, incoherence, hallucinations, psychosis, delirium, hyperactivity, twitching or jerking movements, stereotypy, and seizures.

MANAGEMENT: Concurrent use of phenothiazines and TCAs should be approached with caution, particularly in the elderly and those with underlying organic brain disease, who tend to be more sensitive to the central anticholinergic effects of these drugs and in whom toxicity symptoms may be easily overlooked. Patients should be advised to notify their physician promptly if they experience potential symptoms of anticholinergic intoxication (e.g., abdominal pain, fever, heat intolerance, blurred vision, confusion, hallucinations) or cardiovascular toxicity (e.g., dizziness, palpitations, arrhythmias, syncope). Ambulatory patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them. A dosage reduction in one or both drugs may be necessary if excessive adverse effects develop.

References

  1. Loga S, Curry S, Lader M (1981) "Interaction of chlorpromazine and nortriptyline in patients with schizophrenia." Clin Pharmacokinet, 6, p. 454-62
  2. Stadnyk AN, Glezos JD (1983) "Drug-induced heat stroke." Can Med Assoc J, 128, p. 957-9
  3. Bock JL, Nelson JC, Gray S, Jatlow PI (1983) "Desipramine hydroxylation: variability and effect of antipsychotic drugs." Clin Pharmacol Ther, 33, p. 322-8
  4. Gram LF, Overo KF (1972) "Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man." Br Med J, 1, p. 463-5
  5. El-Yousef MK, Manier DH (1974) "Tricyclic antidepressants and phenothiazines." JAMA, 229, p. 1419
  6. Hirschowitz J, Bennett JA, Zemlan FP, Garver DL (1983) "Thioridazine effect on desipramine plasma levels." J Clin Psychopharmacol, 3, p. 376-9
  7. Vandel S, Sandoz M, Vandel B, Bonin B, Allers G, Volmat R (1986) "Biotransformation of amitriptyline in man: interaction with phenothiazines." Neuropsychobiology, 15, p. 15-9
  8. Zelman S, Guillan R (1970) "Heat stroke in phenothiazine-treated patients: a report of three fatalities." Am J Psychiatry, 126, p. 1787-90
  9. Mann SC, Boger WP (1978) "Psychotropic drugs, summer heat and humidity, and hyperplexia: a danger restated." Am J Psychiatry, 135, p. 1097-100
  10. Warnes H, Lehmann HE, Ban TA (1967) "Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases." Can Med Assoc J, 96, p. 1112-3
  11. Siris SG, Cooper TB, Rifkin AE, Brenner R, Lieberman JA (1982) "Plasma imipramine concentrations in patients receiving concomitant fluphenazine decanoate." Am J Psychiatry, 139, p. 104-6
  12. Johnson AL, Hollister LE, Berger PA (1981) "The anticholinergic intoxication syndrome: diagnosis and treatment." J Clin Psychiatry, 42, p. 313-7
  13. Lee BS (1986) "Possibility of hyperpyrexia with antipsychotic and anticholinergic drugs." J Clin Psychiatry, 47, p. 571
  14. Moreau A, Jones BD, Banno V (1986) "Chronic central anticholinergic toxicity in manic depressive illness mimicking dementia." Can J Psychiatry, 31, p. 339-41
  15. Hvizdos AJ, Bennett JA, Wells BG, Rappaport KB, Mendel SA (1983) "Anticholinergic psychosis in a patient receiving usual doses of haloperidol." Clin Pharm, 2, p. 174-8
  16. Maynard GL, Soni P (1996) "Thioridazine interferences with imipramine metabolism and measurement." Ther Drug Monit, 18, p. 729-31
View all 16 references

Switch to consumer interaction data

Moderate

FLUoxetine promethazine

Applies to: Prozac (fluoxetine), promethazine

MONITOR: Coadministration with fluoxetine may increase the plasma concentrations of certain neuroleptic agents and potentiate the risk of extrapyramidal adverse effects. The proposed mechanism is inhibition of CYP450 2D6 metabolism by fluoxetine and its active metabolite, norfluoxetine. In 10 psychiatric patients stabilized on risperidone therapy (4 to 6 mg/day), the addition of fluoxetine (20 mg/day) led to a mean 4-fold increase in plasma risperidone concentrations and a 75% increase in levels of active moiety (i.e. sum of the concentrations of risperidone and its active 9-hydroxy metabolite). One patient developed severe akathisia and two developed Parkinsonian symptoms within the first two weeks. In contrast, mean plasma concentrations of haloperidol were elevated by just 20% following the addition of fluoxetine (20 mg/day for 7 to 10 days) in eight psychotic patients stabilized on haloperidol, and extrapyramidal side effects did not increase appreciably. However, haloperidol has been implicated clinically in various case reports, as has the phenothiazine fluphenazine. Some believe that a pharmacodynamic interaction may be partially responsible, as fluoxetine alone has been associated with extrapyramidal symptoms, possibly due to serotonergic inhibition of nigrostriatal dopaminergic pathways.

MANAGEMENT: Caution is recommended if fluoxetine is prescribed with phenothiazines or other neuroleptic agents that are thought to be metabolized by CYP450 2D6. Plasma neuroleptic levels and pharmacologic effects should be closely monitored and the dosage(s) adjusted accordingly, particularly following initiation or discontinuation of fluoxetine in patients who are stabilized on their neuroleptic regimen. Patients should be advised to contact their physician if they develop extrapyramidal symptoms such as tremor, shuffling gait, drooling, a mask-like face, tongue stiffness, muscle spasms or rigidity, and involuntary movements. Due to the long half-life of fluoxetine and norfluoxetine, the risk of an interaction may exist for an extended period (up to several weeks) after discontinuation of fluoxetine.

References

  1. Stein MH (1991) "Tardive dyskinesia in a patient taking haloperidol and fluoxetine." Am J Psychiatry, 148, p. 683
  2. Tate JL (1989) "Extrapyramidal symptoms in a patient taking haloperidol and fluoxetine." Am J Psychiatry, 146, p. 399-400
  3. Goff DC, Midha KK, Brotman AW, Waites M, Baldessarini RJ (1991) "Elevation of plasma concentrations of haloperidol after the addition of fluoxetine." Am J Psychiatry, 148, p. 790-2
  4. (1989) "Fluoxetine and extrapyramidal side effects." Am J Psychiatry, 146, p. 1352-3
  5. Ketai R (1993) "Interaction between fluoxetine and neuroleptics." Am J Psychiatry, 150, p. 836-7
  6. Baldessarini RJ, Marsh E (1990) "Fluoxetine and side effects." Arch Gen Psychiatry, 47, p. 191-2
  7. Ciraulo DA, Shader RI (1990) "Fluoxetine drug-drug interactions: I. Antidepressants and antipsychotics." J Clin Psychopharmacol, 10, p. 48-50
  8. Lock JD, Gwirtsman HE, Targ EF (1990) "Possible adverse drug interactions between fluoxetine and other psychotropics." J Clin Psychopharmacol, 10, p. 383-4
  9. Dsouza DC, Bennett A, Abidargham A, Krystal JH (1994) "Precipitation of a psychoneuromotor syndrome by fluoxetine in a haloperidol-treated schizophrenic patient." J Clin Psychopharmacol, 14, p. 361-3
  10. Avenoso A, Spina E, Campo G, Facciola G, Ferlito M, Zuccaro P, Perucca E, Caputi AP (1997) "Interaction between fluoxetine and haloperidol: Pharmacokinetic and clinical implications." Pharmacol Res, 35, p. 335-9
  11. Tyndale RF, Kalow W, Inaba T (1991) "Oxidation of reduced haloperidol to haloperidol: involvement of human P450IID6 (sparteine/debrisoquine monooxygenase)." Br J Clin Pharmacol, 31, p. 655-60
  12. Bork JA, Rogers T, Wedlund PJ, deLeon J (1999) "A pilot study on risperidone metabolism: The role of cytochromes P450 2D6 and 3A." J Clin Psychiatry, 60, p. 469-76
  13. Spina E, Avenoso A, Scordo MG, et al. (2002) "Inhibition of Risperidone Metabolism by Fluoxetine in Patients With Schizophrenia: A Clinically Relevant Pharmacokinetic Drug Interaction." J Clin Psychopharmacol, 22, p. 419-423
View all 13 references

Switch to consumer interaction data

Moderate

amitriptyline valerian

Applies to: amitriptyline, Valerian Root (valerian)

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

FLUoxetine valerian

Applies to: Prozac (fluoxetine), Valerian Root (valerian)

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

promethazine valerian

Applies to: promethazine, Valerian Root (valerian)

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

amitriptyline pregabalin

Applies to: amitriptyline, Lyrica (pregabalin)

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

FLUoxetine pregabalin

Applies to: Prozac (fluoxetine), Lyrica (pregabalin)

MONITOR: The efficacy of anticonvulsants may be diminished during coadministration with selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitor (SNRIs). Antidepressants including SSRIs and SNRIs can reduce seizure threshold. In clinical trials, convulsions have typically been reported in 0.1% to 0.3% of patients receiving SSRIs for major depressive disorders. There have been rare reports of prolonged seizures in patients on fluoxetine receiving electroconvulsive therapy (ECT).

MONITOR: Coadministration of SSRIs or SNRIs may potentiate the central nervous system (CNS) adverse effects of anticonvulsants such as somnolence and cognitive and psychomotor impairment.

MONITOR: Coadministration of SSRIs or SNRIs with some anticonvulsants, particularly carbamazepine, eslicarbazepine, oxcarbazepine and valproic acid, may increase the risk of hyponatremia. Treatment with SSRIs or SNRIs has been associated with hyponatremia, which may be due to the syndrome of inappropriate antidiuretic hormone secretion (SIADH) in many cases. While generally reversible following discontinuation of SSRI/SNRI treatment, cases with serum sodium lower than 110 mmol/L have been reported. Hyponatremia and SIADH may also result from treatment with some anticonvulsants. The risk appears to be dose-related, and elderly patients and patients who are volume depleted (e.g., diuretic use) may be at greater risk.

MANAGEMENT: SSRIs and SNRIs should be avoided in patients with unstable epilepsy, and used cautiously in patients with epilepsy controlled with anticonvulsant medications. Treatment with SSRIs and SNRIs should be discontinued if seizures develop or seizure frequency increases. Patients receiving SSRIs or SNRIs with anticonvulsants, particularly carbamazepine, eslicarbazepine, oxcarbazepine and/or valproic acid, should also have serum sodium levels measured regularly and monitored for development of hyponatremia, particularly when higher dosages of these medications are used. Signs and symptoms of hyponatremia include nausea, vomiting, headache, difficulty concentrating, memory impairment, confusion, malaise, lethargy, muscle weakness or spasms, and unsteadiness. In more severe and/or acute cases, hallucination, syncope, seizure, coma, respiratory arrest, and death may occur. Discontinuation of SSRIs and SNRIs should be considered in patients who develop symptomatic hyponatremia, and appropriate medical intervention instituted. All patients receiving concomitant therapy with SSRIs or SNRIs and anticonvulsants should be counseled against driving, operating machinery, or engaging in potentially hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. (2002) "Product Information. Tegretol (carbamazepine)." Novartis Pharmaceuticals
  2. (2001) "Product Information. Zoloft (sertraline)." Roerig Division
  3. (2001) "Product Information. Prozac (fluoxetine)." Dista Products Company
  4. (2001) "Product Information. Effexor (venlafaxine)." Wyeth-Ayerst Laboratories
  5. (2001) "Product Information. Paxil (paroxetine)." GlaxoSmithKline
  6. (2001) "Product Information. Luvox (fluvoxamine)." Solvay Pharmaceuticals Inc
  7. (2001) "Product Information. Celexa (citalopram)." Forest Pharmaceuticals
  8. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  9. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  10. (2004) "Product Information. Cymbalta (duloxetine)." Lilly, Eli and Company
  11. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  12. (2008) "Product Information. Pristiq (desvenlafaxine)." Wyeth Laboratories
  13. (2009) "Product Information. Savella (milnacipran)." Forest Pharmaceuticals
  14. (2013) "Product Information. Fetzima (levomilnacipran)." Forest Pharmaceuticals
  15. (2013) "Product Information. Aptiom (eslicarbazepine)." Sunovion Pharmaceuticals Inc
  16. Belcastro V, Costa C, Striano P (2008) "Levetiracetam-associated hyponatremia." Seizure, 17, p. 389-90
  17. Bavbek N, Alkan R, Uz E, Kaftan O, Akcay A (2008) "Hyponatremia associated with sodium valproate in a 22-year-old male." Nephrol Dial Transplant, 23, epub
  18. Patel KR, Meesala A, Stanilla JK (2010) "Sodium valproate-induced hyponatremia: a case report." Prim Care Companion J Clin Psychiatry, 12, epub
  19. Gandhi S, McArthur E, Mamdani MM, et al. (2016) "Antiepileptic drugs and hyponatremia in older adults: Two population-based cohort studies." Epilepsia, 57, p. 2067-79
  20. Falhammar H, Lindh JD, Calissendorff J, et al. (2018) "Differences in associations of antiepileptic drugs and hospitalization due to hyponatremia: A population-based case-control study." Seizure, 59, p. 28-33
View all 20 references

Switch to consumer interaction data

Moderate

promethazine pregabalin

Applies to: promethazine, Lyrica (pregabalin)

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

valerian pregabalin

Applies to: Valerian Root (valerian), Lyrica (pregabalin)

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

No other interactions were found between your selected drugs. However, this does not necessarily mean no other interactions exist. Always consult your healthcare provider.

Drug and food interactions

Moderate

FLUoxetine food

Applies to: Prozac (fluoxetine)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

valerian food

Applies to: Valerian Root (valerian)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

pregabalin food

Applies to: Lyrica (pregabalin)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

amitriptyline food

Applies to: amitriptyline

GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.

MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.

References

  1. Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
  2. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  3. Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
  4. Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
  5. Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
  6. Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
  7. Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
View all 7 references

Switch to consumer interaction data

Moderate

promethazine food

Applies to: promethazine

GENERALLY AVOID: Concurrent use of ethanol and phenothiazines may result in additive CNS depression and psychomotor impairment. Also, ethanol may precipitate dystonic reactions in patients who are taking phenothiazines. The two drugs probably act on different sites in the brain, although the exact mechanism of the interaction is not known.

MANAGEMENT: Patients should be advised to avoid alcohol during phenothiazine therapy.

References

  1. Lutz EG (1976) "Neuroleptic-induced akathisia and dystonia triggered by alcohol." JAMA, 236, p. 2422-3
  2. Freed E (1981) "Alcohol-triggered-neuroleptic-induced tremor, rigidity and dystonia." Med J Aust, 2, p. 44-5

Switch to consumer interaction data

Therapeutic duplication warnings

Therapeutic duplication is the use of more than one medicine from the same drug category or therapeutic class to treat the same condition. This can be intentional in cases where drugs with similar actions are used together for demonstrated therapeutic benefit. It can also be unintentional in cases where a patient has been treated by more than one doctor, or had prescriptions filled at more than one pharmacy, and can have potentially adverse consequences.

Duplication

CNS drugs

Therapeutic duplication

The recommended maximum number of medicines in the 'CNS drugs' category to be taken concurrently is usually three. Your list includes five medicines belonging to the 'CNS drugs' category:

  • Prozac (fluoxetine)
  • promethazine
  • Lyrica (pregabalin)
  • amitriptyline
  • 5-HTP (5-hydroxytryptophan)

Note: In certain circumstances, the benefits of taking this combination of drugs may outweigh any risks. Always consult your healthcare provider before making changes to your medications or dosage.

Duplication

Antidepressants

Therapeutic duplication

The recommended maximum number of medicines in the 'antidepressants' category to be taken concurrently is usually one. Your list includes three medicines belonging to the 'antidepressants' category:

  • Prozac (fluoxetine)
  • amitriptyline
  • 5-HTP (5-hydroxytryptophan)

Note: In certain circumstances, the benefits of taking this combination of drugs may outweigh any risks. Always consult your healthcare provider before making changes to your medications or dosage.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Learn more

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.