Skip to main content

Drug Interactions between Claritin-D 24 Hour and Maldroxal Plus

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

No interactions were found between Claritin-D 24 Hour and Maldroxal Plus. However, this does not necessarily mean no interactions exist. Always consult your healthcare provider.

Claritin-D 24 Hour

A total of 283 drugs are known to interact with Claritin-D 24 Hour.

Maldroxal Plus

A total of 424 drugs are known to interact with Maldroxal Plus.

Drug and food interactions

Major

aluminum hydroxide food

Applies to: Maldroxal Plus (aluminum hydroxide / magnesium hydroxide / simethicone)

GENERALLY AVOID: The concomitant administration of aluminum-containing products (e.g., antacids and phosphate binders) and citrates may significantly increase serum aluminum concentrations, resulting in toxicity. Citrates or citric acid are contained in numerous soft drinks, citrus fruits, juices, and effervescent and dispersible drug formulations. Citrates enhance the gastrointestinal absorption of aluminum by an unknown mechanism, which may involve the formation of a soluble aluminum-citrate complex. Various studies have reported that citrate increases aluminum absorption by 4.6- to 50-fold in healthy subjects. Patients with renal insufficiency are particularly at risk of developing hyperaluminemia and encephalopathy. Fatalities have been reported. Patients with renal failure or on hemodialysis may also be at risk from soft drinks and effervescent and dispersible drug formulations that contain citrates or citric acid. It is unknown what effect citrus fruits or juices would have on aluminum absorption in healthy patients.

MANAGEMENT: The concomitant use of aluminum- and citrate-containing products and foods should be avoided by renally impaired patients. Hemodialysis patients should especially be cautioned about effervescent and dispersible over-the-counter remedies and soft drinks. Some experts also recommend that healthy patients should separate doses of aluminum-containing antacids and citrates by 2 to 3 hours.

ADJUST DOSING INTERVAL: The administration of aluminum-containing antacids with enteral nutrition may result in precipitation, formation of bezoars, and obstruction of feeding tubes. The proposed mechanism is the formation of an insoluble complex between the aluminum and the protein in the enteral feeding. Several cases of esophageal plugs and nasogastric tube obstructions have been reported in patients receiving high-protein liquids and an aluminum hydroxide-magnesium hydroxide antacid or an aluminum hydroxide antacid.

MANAGEMENT: Some experts recommend that antacids should not be mixed with or given after high protein formulations, that the antacid dose should be separated from the feeding by as much as possible, and that the tube should be thoroughly flushed before administration.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  2. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm 66 (2009): 1438-67

Switch to consumer interaction data

Moderate

pseudoephedrine food

Applies to: Claritin-D 24 Hour (loratadine / pseudoephedrine)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res 1 (1979): 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther 11 (1970): 656
  3. "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc PROD (2001):
  4. "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals PROD (2001):
  5. "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals PROD (2001):
  6. "Product Information. Focalin (dexmethylphenidate)." Mikart Inc (2001):
  7. "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company (2002):
View all 7 references

Switch to consumer interaction data

Minor

loratadine food

Applies to: Claritin-D 24 Hour (loratadine / pseudoephedrine)

Theoretically, grapefruit juice may increase the plasma concentrations of loratadine as it does other drugs that are substrates of the CYP450 3A4 enzymatic pathway. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. The clinical significance of this potential interaction is unknown. Reported interactions with potent CYP450 3A4 inhibitors like clarithromycin, erythromycin and ketoconazole have produced substantial increases in the area under the plasma concentration-time curve (AUC) of loratadine and its active metabolite, descarboethoxyloratadine, without associated changes in the overall safety profile of the drug.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  3. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  4. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie 49 (1994): 522-4
  5. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  6. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  7. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  8. Brannan MD, Reidenberg P, Radwanski E, et al. "Loratadine administered concomitantly with erythromycin: pharmacokinetic and electrocardiographic evaluations." Clin Pharmacol Ther 58 (1995): 269-78
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther 58 (1995): 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol 36 (1996): 469-76
  11. Majeed A, Kareem A "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol 10 (1996): 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol 42 (1996): p662
  13. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  14. Yumibe N, Huie K, Chen KJ, Snow M, Clement RP, Cayen MN "Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine. Formation o descarboethoxyloratadine by CYP3A4 and CYP2D6." Biochem Pharmacol 51 (1996): 165-72
  15. Carr RA, Edmonds A, Shi H, Locke CS, Gustavson LE, Craft JC, Harris SI, Palmer R "Steady-state pharmacokinetics and electrocardiographic pharmacodynamics of clarithromycin and loratadine after individual or concomitant administration." Antimicrob Agents Chemother 42 (1998): 1176-80
  16. Kantola T, Kivisto KT, Neuvonen PJ "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther 63 (1998): 397-402
  17. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  18. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  19. Garg SK, Kumar N, Bhargava VK, Prabhakar SK "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther 64 (1998): 286-8
  20. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther 64 (1998): 477-83
  21. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  22. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  23. Eagling VA, Profit L, Back DJ "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol 48 (1999): 543-52
  24. Damkier P, Hansen LL, Brosen K "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol 48 (1999): 829-38
  25. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther 21 (1999): 1890-9
  26. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol 49 (2000): 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  30. Kosoglou T, Salfi M, Lim JM, Batra VK, Cayen MN, Affrime MB "Evaluation of the pharmacokinetics and electrocardiographic pharmacodynamics of loratadine with concomitant administration of ketoconazole or cimetidine." Br J Clin Pharmacol 50 (2000): 581-9
View all 30 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.