Skip to main content

Drug Interactions between amlodipine and Purinethol

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

No interactions were found between amlodipine and Purinethol. However, this does not necessarily mean no interactions exist. Always consult your healthcare provider.

amlodipine

A total of 541 drugs are known to interact with amlodipine.

Purinethol

A total of 297 drugs are known to interact with Purinethol.

Drug and food interactions

Moderate

mercaptopurine food

Applies to: Purinethol (mercaptopurine)

ADJUST DOSING INTERVAL: The oral bioavailability of mercaptopurine (6-MP) is highly variable and may be affected by administration with food or dairy products. The mechanism by which food may impact the absorption of 6-MP has not been fully established, but cow's milk specifically has been found to contain a high concentration of xanthine oxidase, the enzyme responsible for first-pass metabolism of 6-MP to the inactive metabolite 6-thiouric acid. Incubation with cow's milk at 37 C induced a 30% catabolism of 6-MP within 30 minutes in one investigation. However, food or dairy intake with 6-MP in study patients has yielded variable results. In a study conducted in 17 children with acute lymphoblastic leukemia (ALL), oral 6-MP 75 mg/m2 administered 15 minutes after a standardized breakfast including 250 mL of milk resulted in a prolonged Tmax and a lower Cmax and AUC compared with 6-MP administration in the fasting state (mean Tmax: 2.3 hours vs. 1.2 hours; mean Cmax: 0.63 uM vs. 0.98 uM; mean AUC: 105 uM vs. 143 uM, respectively). In a different study, oral 6-MP 31.2 to 81.1 mg/m2 administered to 7 subjects with ALL 15 minutes after a standard breakfast consisting of orange juice, cereal, and toast also trended towards longer Tmax and lower Cmax values compared to 6-MP administration after an overnight fast, although the differences were not statistically significant. Two subjects had blood samples that were all below the limit of detection (20 ng/mL) following administration in the fed state. Likewise, a study of 15 pediatric patients reported non-significant 20% to 22% decreases in the Cmax and AUC of 6-MP when administered after a standardized breakfast containing both milk and cheese compared to administration after fasting, but in contrast to the two earlier studies, Tmax was decreased from 1.8 to 1.1 hours. Another study of 10 children with ALL or non-Hodgkin's lymphoma given an average oral 6-MP dose of 63 mg/m2 revealed substantial interpatient variations in the effect of food intake on 6-MP plasma levels, with Cmax changes ranging from 67% decrease to 81% increase and AUC changes ranging from 53% decrease to 86% increase relative to administration following fasting. Collectively for the group, however, there was no statistically significant difference in mean Tmax, Cmax, or AUC between the fed and fasting states. In this study, patients were fed what they normally ate at home rather than a standardized breakfast, which may have contributed to the inconsistent results. The clinical significance of the data and observations from these studies has not been determined. An interaction with milk was suspected in a four-year-old male with ALL who experienced persistent elevations of peripheral blood counts during maintenance with 6-MP and methotrexate despite increasing doses of 6-MP up to 160% of the calculated dosage for his body surface area (75 mg/m2). Cessation of concomitant milk ingestion allowed for the 6-MP dosage to return to 75 mg/m2 and resulted in control of peripheral blood counts within a week. Other data do not support a clinically relevant interaction with food or dairy products. In a prospective study of 441 patients aged 2 to 20 years receiving 6-MP for ALL maintenance, investigators found no significant association between relapse risk and 6-MP ingestion habits including administration with food versus never with food and administration with milk/dairy versus never with milk/dairy. Among the 56.2% of patients who were considered adherent by the study, there was also no significant association between red cell thioguanine nucleotide (active metabolite) levels and taking 6-MP with food versus without or taking with milk/dairy versus without. However, taking 6-MP with milk/dairy was associated with a 1.9-fold increased risk for nonadherence. These results suggest that taking 6-MP with food or milk/dairy products may not influence clinical outcome but may hinder patient adherence. Poor 6-MP adherence has been associated with an increased risk of childhood ALL relapse.

MANAGEMENT: To minimize variability in absorption and systemic exposure, the timing of mercaptopurine administration should be standardized in relation to food intake (i.e., always with food or always on an empty stomach). Some authorities suggest avoiding concomitant administration with milk or dairy products, although the clinical relevance of their effects on mercaptopurine bioavailability has not been established. As a precaution, patients may consider taking mercaptopurine at least 1 hour before or 2 hours after milk or dairy ingestion if they are able to do so without compromising treatment adherence.

References (11)
  1. lafolie p, bjork o, hayder s, ahstrom l, Peterson C (1989) "Variability of 6-mercaptopurine pharmacokinetics during oral maintenance therapy of children with acute leukemia." Med Oncol Tumor Pharmacother, 6, p. 259-65
  2. (2024) "Product Information. Mercaptopurine (mercaptopurine)." Quinn Pharmaceutical. LLC
  3. (2024) "Product Information. Allmercap (mercaptOPURine)." Link Medical Products Pty Ltd T/A Link Pharmaceuticals
  4. (2024) "Product Information. Xaluprine (mercaptopurine)." Nova Laboratories Ltd
  5. (2023) "Product Information. Mercaptopurine (mercaptopurine)." Sterimax Inc
  6. Landier W, Hageman L, Chen Y, et al. (2017) "Mercaptopurine ingestion habits, red cell thioguanine nucleotide levels, and relapse risk in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group Study AALL03N1." J Clin Oncol, 35, p. 1730-6
  7. rivard ge, Lin KT, Leclerc JM, David M (1989) "Milk could decrease the bioavailability of 6-mercaptopurine." Am J Pediatr Hematol Oncol, 11, p. 402-6
  8. Burton NK, barnett mj, Aherne GW, et al. (1986) "The effect of food on the oral administration of 6-mercaptopurine." Cancer Chemother Pharmacol, 18, p. 90-1
  9. Riccardi R, Balis FM, ferrara p, et al. (1986) "Influence of food intake on bioavailability of oral 6-mercaptopurine in children with acute lymphoblastic leukemia." Pediatr Hematol Oncol, 3, p. 319-24
  10. Lonnerholm G, Kreuger A, Lindstrom B, et al. (1989) "Oral mercaptopurine in childhood leukemia: influence of food intake on bioavailability." Pediatr Hematol Oncol, 6, p. 105-12
  11. Sofianou-Katsoulis A, Khakoo G, Kaczmarski R, et al. (2006) "Reduction in bioavailability of 6-mercaptopurine on simultaneous administration with cow's milk." Pediatr Hematol Oncol, 23, p. 485-7
Moderate

amLODIPine food

Applies to: amlodipine

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients should also avoid driving or operating hazardous machinery until they know how the medications affect them.

References (10)
  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
  9. (2023) "Product Information. Buprenorphine (buprenorphine)." G.L. Pharma UK Ltd
  10. (2023) "Product Information. Temgesic (buprenorphine)." Reckitt Benckiser Pty Ltd
Moderate

amLODIPine food

Applies to: amlodipine

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References (14)
  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
Minor

amLODIPine food

Applies to: amlodipine

The consumption of grapefruit juice may slightly increase plasma concentrations of amlodipine. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. Data have been conflicting and the clinical significance is unknown. Monitoring for calcium channel blocker adverse effects (e.g., headache, hypotension, syncope, tachycardia, edema) is recommended.

References (6)
  1. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  2. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  3. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  4. Vincent J, Harris SI, Foulds G, Dogolo LC, Willavize S, Friedman HL (2000) "Lack of effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of amlodipine." Br J Clin Pharmacol, 50, p. 455-63
  5. Josefsson M, Ahlner J (2002) "Amlodipine and grapefruit juice." Br J Clin Pharmacol, 53, 405; discussion 406
  6. Kane GC, Lipsky JJ (2000) "Drug-grapefruit juice interactions." Mayo Clin Proc, 75, p. 933-42

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.