Skip to Content

Ceritinib

Medically reviewed by Drugs.com. Last updated on Jun 17, 2019.

Pronunciation

(se RI ti nib)

Index Terms

  • LDK378

Dosage Forms

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Capsule, Oral:

Zykadia: 150 mg [contains fd&c blue #2 (indigotine)]

Tablet, Oral:

Zykadia: 150 mg [contains fd&c blue #2 aluminum lake]

Brand Names: U.S.

  • Zykadia

Pharmacologic Category

  • Antineoplastic Agent, Anaplastic Lymphoma Kinase Inhibitor
  • Antineoplastic Agent, Tyrosine Kinase Inhibitor

Pharmacology

Ceritinib is a potent inhibitor of anaplastic lymphoma kinase (ALK), a tyrosine kinase involved in the pathogenesis of non-small cell lung cancer. ALK gene abnormalities due to mutations or translocations may result in expression of oncogenic fusion proteins (eg, ALK fusion protein) which alter signaling and expression and result in increased cellular proliferation and survival in tumors which express these fusion proteins. ALK inhibition reduces proliferation of cells expressing the genetic alteration. Ceritinib also inhibits insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (InsR), and ROS1. Ceritinib has demonstrated activity in crizotinib-resistant tumors in NSCLC xenograft models.

Absorption

AUC and Cmax increased 73% and 41%, respectively, when a single ceritinib 500 mg was administered with a high-fat meal, and 58% and 43%, respectively when taken with a low-fat meal (when compared to fasting). A dose optimization study (comparing ceritinib 450 mg or 600 mg daily with food to ceritinib 750 mg [fasted]) found no clinically meaningful difference in the systemic steady-state exposure of ceritinib 450 mg (with food) compared to the 750 mg fasted arm (Cho 2017).

Distribution

4,230 L (following a single 750 mg fasted dose), with a small preferential distribution to red blood cells versus plasma

Metabolism

Primarily hepatic via CYP3A

Excretion

Feces (~92% with 68% as unchanged drug); urine (~1%)

Time to Peak

~4 to 6 hours

Half-Life Elimination

41 hours (following a single 750 mg fasted dose)

Protein Binding

97% to human plasma proteins

Special Populations: Hepatic Function Impairment

Following a single 750 mg dose of ceritinib (under fasted conditions), the geometric mean systemic exposure (AUCinf) was increased by 66% and unbound ceritinib AUCinf was increased by 108% in subjects with severe impairment (Child-Pugh class C), compared to subjects with normal hepatic function.

Use: Labeled Indications

Non-small cell lung cancer, metastatic: Treatment of anaplastic lymphoma kinase (ALK)-positive (as detected by an approved test) metastatic non-small cell lung cancer (NSCLC).

Contraindications

There are no contraindications listed in the manufacturer's US labeling.

Canadian labeling: Known hypersensitivity to ceritinib or any component of the formulation; congenital long QT syndrome or persistent Fridericia-corrected electrocardiogram interval (QTcF) of >500 msec.

Dosing: Adult

Note: Ceritinib is associated with a moderate emetic potential (Hesketh 2017; Roila 2016); antiemetics may be needed to prevent nausea and vomiting.

Non-small cell lung cancer (ALK-positive), metastatic: Oral: 450 mg once daily (with food); continue until disease progression or unacceptable toxicity.

Note: The recommended ceritinib dose is now 450 mg once daily with food (dose adjustment levels are also altered); the previous ceritinib dose was 750 mg once daily and administered on an empty stomach. Ceritinib 750 mg once daily in a fasted state may still be the approved dose in some regions outside of the US.

Missed doses: If a dose is missed, take the missed dose unless the next dose is due within 12 hours. If vomiting occurs, do not administer an additional dose, patients should continue with the next scheduled dose.

Dosage adjustment for concomitant therapy:

Strong CYP3A inhibitors: Avoid concomitant use of strong CYP3A inhibitors; if concurrent administration cannot be avoided, reduce ceritinib dose by approximately one-third (rounded to the nearest multiple of the 150 mg strength). After discontinuation of the strong CYP3A inhibitor, resume ceritinib therapy at the dose used prior to initiation of the CYP3A inhibitor.

Strong CYP3A inducers: Avoid concurrent use of strong CYP3A inducers during treatment with ceritinib.

Dosing: Geriatric

Refer to adult dosing.

Dosing: Adjustment for Toxicity

Recommended ceritinib dosage adjustment levels (when administered with food):

Initial starting dose: 450 mg once daily

First dose reduction: 300 mg once daily

Second dose reduction: 150 mg once daily

Discontinue if patients are unable to tolerate 150 mg daily.

Note: If dosage adjustments are required due to toxicity in regions outside of the US where the approved ceritinib dose remains 750 mg once daily (fasted), reduce the dose in decrements of 150 mg and discontinue if patients are unable to tolerate 300 mg daily (Soria 2017).

Cardiac:

Bradycardia:

Symptomatic bradycardia (not life-threatening): Interrupt therapy and evaluate concomitant medications known to cause bradycardia.

Upon recovery to asymptomatic bradycardia or to a heart rate ≥60 beats per minute, adjust the dose.

Alternatively, the following recommendations have been made: Upon recovery to asymptomatic bradycardia or to a heart rate ≥60 beats per minute. If concomitant medication is identified and discontinued or its dose adjusted, reinitiate ceritinib at its previous dose. If no concomitant medication is identified or if it is identified but not discontinued or not dose-adjusted, reinitiate ceritinib with the dose reduced by 150 mg (Zykadia Canadian product labeling).

Symptomatic bradycardia (life-threatening or requiring intervention) in patients taking concomitant medications known to cause bradycardia/hypotension: Interrupt therapy until recovery to asymptomatic bradycardia or to a heart rate ≥60 beats per minute.

If the concomitant medication can be adjusted or discontinued, resume ceritinib therapy with the dose reduced by 150 mg.

Alternatively, the following recommendations have been made: If concomitant medication can be discontinued or its dose adjusted, resume ceritinib with the dose reduced by 300 mg; monitor frequently; permanently discontinue ceritinib for recurrence (Zykadia Canadian product labeling).

Symptomatic bradycardia (life-threatening) in patients not taking concomitant medications known to cause bradycardia/hypotension: Permanently discontinue therapy.

QTc prolongation:

QTc interval >500 msec on at least 2 separate ECGs: Interrupt therapy until QTc interval is <481 msec or recovers to baseline if baseline QTc is ≥481 msec, then resume therapy with a 150 mg dose reduction.

QTc prolongation in combination with torsades de pointes, polymorphic ventricular tachycardia, or signs/symptoms of serious arrhythmia: Permanently discontinue therapy.

Gastrointestinal:

Severe or intolerable nausea, vomiting, or diarrhea (despite appropriate management): Interrupt therapy until improved, then resume treatment with a 150 mg dose reduction.

Lipase or amylase elevation >2 times ULN: Interrupt therapy and monitor serum lipase and amylase; upon recovery to <1.5 times ULN, resume treatment with a 150 mg dose reduction.

Metabolic: Persistent hyperglycemia >250 mg/dL (despite optimal antihyperglycemic therapy): Interrupt therapy until hyperglycemia is adequately controlled, then resume therapy with a 150 mg dose reduction. If hyperglycemia cannot be controlled (with optimal medical management), discontinue ceritinib.

Pulmonary: Treatment-related interstitial lung disease/pneumonitis (any grade): Permanently discontinue therapy.

Administration

Ceritinib is associated with a moderate emetic potential (Hesketh 2017; Roila 2016); antiemetics may be needed to prevent nausea and vomiting.

Oral: Administer with food. Note: Ceritinib was previously recommended to be administered at a higher dose on an empty stomach, but should now be administered as 450 mg once daily with food.

Dietary Considerations

Avoid grapefruit and grapefruit juice.

Storage

Store at 25°C (77°F); excursions are permitted between 15°C and 30°C (59°F and 86°F).

Drug Interactions

Abemaciclib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Abemaciclib. Monitor therapy

Acalabrutinib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Acalabrutinib. Management: Reduce acalabrutinib dose to 100 mg once daily with concurrent use of a moderate CYP3A4 inhibitor. Monitor patient closely for both acalabrutinib response and evidence of adverse effects with any concurrent use. Consider therapy modification

Ajmaline: May enhance the bradycardic effect of Ceritinib. Ajmaline may enhance the QTc-prolonging effect of Ceritinib. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Consider therapy modification

Amiodarone: May enhance the bradycardic effect of Ceritinib. Amiodarone may enhance the QTc-prolonging effect of Ceritinib. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Consider therapy modification

AmLODIPine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of AmLODIPine. Monitor therapy

Antidiabetic Agents: Hyperglycemia-Associated Agents may diminish the therapeutic effect of Antidiabetic Agents. Monitor therapy

Apixaban: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Apixaban. Monitor therapy

Aprepitant: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Aprepitant. Avoid combination

ARIPiprazole: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of ARIPiprazole. Management: Monitor for increased aripiprazole pharmacologic effects. Aripiprazole dose adjustments may or may not be required based on concomitant therapy and/or indication. Consult full interaction monograph for specific recommendations. Monitor therapy

Asunaprevir: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Asunaprevir. Avoid combination

Avanafil: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Avanafil. Management: The maximum avanafil adult dose is 50 mg per 24-hour period when used together with a moderate CYP3A4 inhibitor. Patients receiving such a combination should also be monitored more closely for evidence of adverse effects. Consider therapy modification

Benzhydrocodone: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Benzhydrocodone. Specifically, the concentration of hydrocodone may be increased. Monitor therapy

Blonanserin: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Blonanserin. Monitor therapy

Bosentan: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Bosentan: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Bosentan. Management: Concomitant use of both a CYP2C9 inhibitor and a CYP3A inhibitor or a single agent that inhibits both enzymes with bosentan is likely to cause a large increase in serum concentrations of bosentan and is not recommended. See monograph for details. Monitor therapy

Bosutinib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Bosutinib. Avoid combination

Bradycardia-Causing Agents: May enhance the bradycardic effect of Ceritinib. Management: If this combination cannot be avoided, monitor patients for evidence of symptomatic bradycardia, and closely monitor blood pressure and heart rate during therapy. Exceptions are discussed in separate monographs. Exceptions: Crizotinib; Lofexidine; Pilsicainide; Propafenone. Consider therapy modification

Bradycardia-Causing Agents: May enhance the bradycardic effect of other Bradycardia-Causing Agents. Monitor therapy

Bretylium: May enhance the bradycardic effect of Bradycardia-Causing Agents. Bretylium may also enhance atrioventricular (AV) blockade in patients receiving AV blocking agents. Monitor therapy

Brexpiprazole: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Brexpiprazole. Management: The brexpiprazole dose should be reduced to 25% of usual if used together with both a moderate CYP3A4 inhibitor and a strong or moderate CYP2D6 inhibitor, or if a moderate CYP3A4 inhibitor is used in a CYP2D6 poor metabolizer. Monitor therapy

Brigatinib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Brigatinib. Management: Avoid concurrent use of brigatinib with moderate CYP3A4 inhibitors when possible. If such a combination cannot be avoided, reduce the dose of brigatinib by approximately 40% (ie, from 180 mg to 120 mg, from 120 mg to 90 mg, or from 90 mg to 60 mg). Consider therapy modification

Bromocriptine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Bromocriptine. Management: The bromocriptine dose should not exceed 1.6 mg daily with use of a moderate CYP3A4 inhibitor. The Cycloset brand specifically recommends this dose limitation, but other bromocriptine products do not make such specific recommendations. Consider therapy modification

Budesonide (Systemic): CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Budesonide (Systemic). Avoid combination

Budesonide (Topical): CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Budesonide (Topical). Management: Per US prescribing information, avoid this combination. Canadian product labeling does not recommend strict avoidance. If combined, monitor for excessive glucocorticoid effects as budesonide exposure may be increased. Consider therapy modification

Cannabidiol: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Cannabidiol. Monitor therapy

Cannabis: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Cannabis. More specifically, tetrahydrocannabinol and cannabidiol serum concentrations may be increased. Monitor therapy

Cilostazol: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Cilostazol. Management: Consider reducing the cilostazol dose to 50 mg twice daily in adult patients who are also receiving moderate inhibitors of CYP3A4. Consider therapy modification

Citalopram: May enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of Citalopram. Monitor therapy

Clofazimine: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Cobimetinib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Cobimetinib. Management: Avoid the concomitant use of cobimetinib and moderate CYP3A4 inhibitors. If concurrent short term (14 days or less) use cannot be avoided, reduce the cobimetinib dose to 20 mg daily. Avoid combination

Codeine: CYP3A4 Inhibitors (Moderate) may increase serum concentrations of the active metabolite(s) of Codeine. Monitor therapy

Colchicine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Colchicine. Management: Reduce colchicine dose as directed when using with a moderate CYP3A4 inhibitor, and increase monitoring for colchicine-related toxicity. See full monograph for details. Use extra caution in patients with impaired renal and/or hepatic function. Consider therapy modification

Conivaptan: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Avoid combination

CYP3A4 Inducers (Moderate): May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

CYP3A4 Inducers (Strong): May decrease the serum concentration of Ceritinib. Avoid combination

CYP3A4 Inhibitors (Moderate): May decrease the metabolism of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

CYP3A4 Inhibitors (Strong): May increase the serum concentration of Ceritinib. Management: If such combinations cannot be avoided, the ceritinib dose should be reduced by approximately one-third (to the nearest 150 mg). Resume the prior ceritinib dose after cessation of the strong CYP3A4 inhibitor. Exceptions discussed in separate monographs. Exceptions: Clarithromycin; Saquinavir; Voriconazole. Consider therapy modification

CYP3A4 Substrates (High risk with Inhibitors): CYP3A4 Inhibitors (Moderate) may decrease the metabolism of CYP3A4 Substrates (High risk with Inhibitors). Exceptions: Alitretinoin (Systemic); Praziquantel; Trabectedin; Vinorelbine. Monitor therapy

Dabrafenib: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Management: Seek alternatives to the CYP3A4 substrate when possible. If concomitant therapy cannot be avoided, monitor clinical effects of the substrate closely (particularly therapeutic effects). Consider therapy modification

Dapoxetine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Dapoxetine. Management: The dose of dapoxetine should be limited to 30 mg per day when used together with a moderate inhibitor of CYP3A4. Consider therapy modification

Deferasirox: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Deflazacort: CYP3A4 Inhibitors (Moderate) may increase serum concentrations of the active metabolite(s) of Deflazacort. Management: Administer one third of the recommended deflazacort dose when used together with a strong or moderate CYP3A4 inhibitor. Consider therapy modification

Domperidone: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Domperidone. Management: Drugs listed as exceptions to this monograph are discussed in further detail in separate drug interaction monographs. Avoid combination

Domperidone: May enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of Domperidone. Avoid combination

DOXOrubicin (Conventional): CYP3A4 Inhibitors (Moderate) may increase the serum concentration of DOXOrubicin (Conventional). Management: Seek alternatives to moderate CYP3A4 inhibitors in patients treated with doxorubicin whenever possible. One U.S. manufacturer (Pfizer Inc.) recommends that these combinations be avoided. Consider therapy modification

Dronabinol: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Dronabinol. Monitor therapy

Dronedarone: Ceritinib may enhance the bradycardic effect of Dronedarone. Ceritinib may enhance the QTc-prolonging effect of Dronedarone. Dronedarone may increase the serum concentration of Ceritinib. Ceritinib may increase the serum concentration of Dronedarone. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Consider therapy modification

Duvelisib: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Eletriptan: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Eletriptan. Management: The use of eletriptan within 72 hours of a moderate CYP3A4 inhibitor should be avoided. Consider therapy modification

Eliglustat: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Eliglustat. Management: Use should be avoided under some circumstances. See full drug interaction monograph for details. Consider therapy modification

Encorafenib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Encorafenib. Management: Avoid concomitant use of encorafenib and moderate CYP3A4 inhibitors whenever possible. If concomitant administration is unavoidable, decrease the encorafenib dose prior to initiation of the CYP3A4 inhibitor. See full monograph for details. Consider therapy modification

Encorafenib: May enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of Encorafenib. Management: Avoid using moderate CYP3A4 inhibitors together with encorafenib if possible. If the combination must be used, reduce the encorafenib dose prior to initiation of the moderate CYP3A4 inhibitor and monitor QT interval. See full monograph for details. Consider therapy modification

Entrectinib: May enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of Entrectinib. Avoid combination

Eplerenone: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Eplerenone. Management: When used concomitantly with moderate inhibitors of CYP3A4, eplerenone dosing recommendations vary by indication and international labeling. See full drug interaction monograph for details. Consider therapy modification

Erdafitinib: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Erdafitinib: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Erdafitinib: May increase the serum concentration of P-glycoprotein/ABCB1 Substrates. Monitor therapy

Estrogen Derivatives: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Estrogen Derivatives. Monitor therapy

Everolimus: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Everolimus. Management: Everolimus dose reductions are required for most indications. See full monograph or prescribing information for specific dose adjustment and monitoring recommendations. Consider therapy modification

FentaNYL: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of FentaNYL. Management: Monitor patients closely for several days following initiation of this combination, and adjust fentanyl dose as necessary. Consider therapy modification

Flibanserin: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Flibanserin. Avoid combination

Fosaprepitant: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Fosaprepitant. Avoid combination

Fosnetupitant: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Fusidic Acid (Systemic): May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Avoid combination

Grapefruit Juice: May increase the serum concentration of Ceritinib. Avoid combination

GuanFACINE: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of GuanFACINE. Management: Reduce the guanfacine dose by 50% when initiating this combination. Consider therapy modification

Halofantrine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Halofantrine. Management: Extreme caution, with possibly increased monitoring of ECGs, should be used if halofantrine is combined with moderate CYP3A4 inhibitors. Drugs listed as exceptions to this monograph are discussed in separate drug interaction monographs. Monitor therapy

Haloperidol: QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may enhance the QTc-prolonging effect of Haloperidol. Management: Monitor for QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Monitor therapy

HYDROcodone: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of HYDROcodone. Monitor therapy

Ibrutinib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Ibrutinib. Management: When treating B-cell malignancies, decrease ibrutinib to 280 mg daily when combined with moderate CYP3A4 inhibitors. When treating graft versus host disease, monitor patients closely and reduce the ibrutinib dose as needed based on adverse reactions. Consider therapy modification

Idelalisib: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Avoid combination

Ifosfamide: CYP3A4 Inhibitors (Moderate) may decrease serum concentrations of the active metabolite(s) of Ifosfamide. Monitor therapy

Imatinib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Imatinib. Monitor therapy

Ivabradine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Ivabradine. Avoid combination

Ivacaftor: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Ivacaftor. Management: Ivacaftor dose reductions are required; consult full monograph content for specific age- and weight-based recommendations. No dose adjustment is needed when using ivacaftor/lumacaftor with a moderate CYP3A4 inhibitor. Consider therapy modification

Ivosidenib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Ivosidenib. Management: Avoid use of moderate CYP3A4 inhibitors with ivosidenib whenever possible. If combined, monitor for increased ivosidenib toxicities. Drugs listed as exceptions are discussed in further detail in separate drug interaction monographs. Consider therapy modification

Ivosidenib: May enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of Ivosidenib. Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Consider therapy modification

Lacosamide: Bradycardia-Causing Agents may enhance the AV-blocking effect of Lacosamide. Monitor therapy

Larotrectinib: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Lefamulin: May enhance the QTc-prolonging effect of QT-prolonging CYP3A4 Substrates. Management: Do not use lefamulin tablets with QT-prolonging CYP3A4 substrates. Lefamulin prescribing information lists this combination as contraindicated. Avoid combination

Lomitapide: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Lomitapide. Avoid combination

Lorlatinib: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Management: Avoid concurrent use of lorlatinib with any CYP3A4 substrates for which a minimal decrease in serum concentrations of the CYP3A4 substrate could lead to therapeutic failure and serious clinical consequences. Consider therapy modification

Lurasidone: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Lurasidone. Management: Lurasidone US labeling recommends reducing lurasidone dose by half with a moderate CYP3A4 inhibitor. Some non-US labeling recommends initiating lurasidone at 20 mg/day and limiting dose to 40 mg/day; avoid concurrent use of grapefruit products. Consider therapy modification

Manidipine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Manidipine. Monitor therapy

Meperidine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Meperidine. Management: Consider reducing meperidine dose if concomitant use with moderate CYP3A4 inhibitors is required. Monitor for signs and symptoms of respiratory depression and sedation when these agents are combined. Consider therapy modification

Methadone: May enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of Methadone. Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Consider therapy modification

Midodrine: May enhance the bradycardic effect of Bradycardia-Causing Agents. Monitor therapy

MiFEPRIStone: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Management: Minimize doses of CYP3A4 substrates, and monitor for increased concentrations/toxicity, during and 2 weeks following treatment with mifepristone. Avoid cyclosporine, dihydroergotamine, ergotamine, fentanyl, pimozide, quinidine, sirolimus, and tacrolimus. Consider therapy modification

Mirodenafil: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Mirodenafil. Monitor therapy

Naldemedine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Naldemedine. Monitor therapy

Nalfurafine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Nalfurafine. Monitor therapy

Naloxegol: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Naloxegol. Avoid combination

Neratinib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Neratinib. Avoid combination

Netupitant: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

NiMODipine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of NiMODipine. Monitor therapy

Olaparib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Olaparib. Management: Avoid use of moderate CYP3A4 inhibitors in patients being treated with olaparib, if possible. If such concurrent use cannot be avoided, the dose of olaparib should be reduced to 150 mg twice daily. Consider therapy modification

Ondansetron: May enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). Management: Monitor for QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Monitor therapy

OxyCODONE: CYP3A4 Inhibitors (Moderate) may enhance the adverse/toxic effect of OxyCODONE. CYP3A4 Inhibitors (Moderate) may increase the serum concentration of OxyCODONE. Serum concentrations of the active metabolite Oxymorphone may also be increased. Monitor therapy

Palbociclib: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Pentamidine (Systemic): May enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). Management: Monitor for QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Monitor therapy

Pexidartinib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Pexidartinib. Monitor therapy

P-glycoprotein/ABCB1 Inhibitors: May increase the serum concentration of P-glycoprotein/ABCB1 Substrates. P-glycoprotein inhibitors may also enhance the distribution of p-glycoprotein substrates to specific cells/tissues/organs where p-glycoprotein is present in large amounts (e.g., brain, T-lymphocytes, testes, etc.). Monitor therapy

Pimecrolimus: CYP3A4 Inhibitors (Moderate) may decrease the metabolism of Pimecrolimus. Monitor therapy

Pimozide: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Pimozide. Avoid combination

Pimozide: May enhance the QTc-prolonging effect of QT-prolonging Agents (Moderate Risk). Avoid combination

Posaconazole: May increase the serum concentration of QT-prolonging CYP3A4 Substrates. Such increases may lead to a greater risk for proarrhythmic effects and other similar toxicities. Avoid combination

Propafenone: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Propafenone. Management: Drugs listed as exceptions to this monograph are discussed in further detail in separate drug interaction monographs. Monitor therapy

QT-prolonging Antidepressants (Moderate Risk): May enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). Exceptions: Citalopram. Monitor therapy

QT-prolonging Antipsychotics (Moderate Risk): QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may enhance the QTc-prolonging effect of QT-prolonging Antipsychotics (Moderate Risk). Management: Monitor for QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Exceptions: Pimozide; QUEtiapine. Monitor therapy

QT-prolonging Class IA Antiarrhythmics (Highest Risk): Ceritinib may enhance the QTc-prolonging effect of QT-prolonging Class IA Antiarrhythmics (Highest Risk). QT-prolonging Class IA Antiarrhythmics (Highest Risk) may enhance the QTc-prolonging effect of Ceritinib. Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Exceptions: Ajmaline. Consider therapy modification

QT-prolonging Class IC Antiarrhythmics (Moderate Risk): May enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). Management: Monitor for QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Monitor therapy

QT-prolonging Class III Antiarrhythmics (Highest Risk): May enhance the QTc-prolonging effect of Ceritinib. Ceritinib may enhance the QTc-prolonging effect of QT-prolonging Class III Antiarrhythmics (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Exceptions: Dronedarone; Sotalol. Consider therapy modification

QT-prolonging Kinase Inhibitors (Highest Risk): May enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of QT-prolonging Kinase Inhibitors (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Exceptions: Ivosidenib. Consider therapy modification

QT-prolonging Kinase Inhibitors (Moderate Risk): QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may enhance the QTc-prolonging effect of QT-prolonging Kinase Inhibitors (Moderate Risk). QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of QT-prolonging Kinase Inhibitors (Moderate Risk). Exceptions: Encorafenib; Entrectinib. Monitor therapy

QT-prolonging Miscellaneous Agents (Highest Risk): QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may enhance the QTc-prolonging effect of QT-prolonging Miscellaneous Agents (Highest Risk). QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of QT-prolonging Miscellaneous Agents (Highest Risk). Management: Consider alternatives to this drug combination. If combined, monitor for QTc interval prolongation and ventricular arrhythmias. Patients with additional risk factors for QTc prolongation may be at even higher risk. Consider therapy modification

QT-prolonging Miscellaneous Agents (Moderate Risk): QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may enhance the QTc-prolonging effect of QT-prolonging Miscellaneous Agents (Moderate Risk). QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of QT-prolonging Miscellaneous Agents (Moderate Risk). Management: Monitor for QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Exceptions: Domperidone. Monitor therapy

QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk): May enhance the QTc-prolonging effect of Ceritinib. Ceritinib may enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of Ceritinib. Management: Monitor for QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Monitor therapy

QT-prolonging Quinolone Antibiotics (Moderate Risk): May enhance the QTc-prolonging effect of QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk). Management: Monitor for QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Monitor therapy

QT-prolonging Strong CYP3A4 Inhibitors (Moderate Risk): Ceritinib may enhance the QTc-prolonging effect of QT-prolonging Strong CYP3A4 Inhibitors (Moderate Risk). QT-prolonging Strong CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of Ceritinib. Management: Avoid concomitant use of ceritinib and strong CYP3A4 inhibitors that prolong the QTc interval whenever possible. If combined, decrease ceritinib dose by one-third and monitor patients for ceritinib toxicities including QTc prolongation and arrhythmias. Consider therapy modification

QUEtiapine: QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may enhance the QTc-prolonging effect of QUEtiapine. QT-prolonging Moderate CYP3A4 Inhibitors (Moderate Risk) may increase the serum concentration of QUEtiapine. Management: Monitor for increased quetiapine toxicities including QTc interval prolongation and ventricular arrhythmias when these agents are combined. Patients with additional risk factors for QTc prolongation may be at even higher risk. Monitor therapy

Ranolazine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Ranolazine. Management: Limit the ranolazine adult dose to a maximum of 500 mg twice daily in patients concurrently receiving moderate CYP3A4 inhibitors (e.g., diltiazem, verapamil, erythromycin, etc.). Consider therapy modification

Rupatadine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Rupatadine. Monitor therapy

Ruxolitinib: May enhance the bradycardic effect of Bradycardia-Causing Agents. Management: Ruxolitinib Canadian product labeling recommends avoiding use with bradycardia-causing agents to the extent possible. Monitor therapy

Ruxolitinib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Ruxolitinib. Monitor therapy

Salmeterol: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Salmeterol. Monitor therapy

Sarilumab: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

SAXagliptin: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of SAXagliptin. Monitor therapy

Sildenafil: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Sildenafil. Monitor therapy

Silodosin: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Silodosin. Monitor therapy

Siltuximab: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Simeprevir: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Simeprevir. Avoid combination

Siponimod: Bradycardia-Causing Agents may enhance the bradycardic effect of Siponimod. Management: Avoid coadministration of siponimod with drugs that may cause bradycardia. Consider therapy modification

Sirolimus: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Sirolimus. Management: Monitor for increased serum concentrations of sirolimus if combined with a moderate CYP3A4 inhibitor. Lower initial sirolimus doses or sirolimus dose reductions will likely be required. Consider therapy modification

Sonidegib: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Sonidegib. Management: Avoid concomitant use of sonidegib and moderate CYP3A4 inhibitors when possible. When concomitant use cannot be avoided, limit CYP3A4 inhibitor use to less than 14 days and monitor for sonidegib toxicity (particularly musculoskeletal adverse reactions). Consider therapy modification

Sotalol: Ceritinib may enhance the bradycardic effect of Sotalol. Ceritinib may enhance the QTc-prolonging effect of Sotalol. Management: Consider alternatives to this combination. Patients with other risk factors (eg, older age, female sex, bradycardia, hypokalemia, hypomagnesemia, heart disease, and higher drug concentrations) are likely at greater risk for these toxicities. Consider therapy modification

St John's Wort: May decrease the serum concentration of Ceritinib. Avoid combination

Stiripentol: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Management: Use of stiripentol with CYP3A4 substrates that are considered to have a narrow therapeutic index should be avoided due to the increased risk for adverse effects and toxicity. Any CYP3A4 substrate used with stiripentol requires closer monitoring. Consider therapy modification

Suvorexant: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Suvorexant. Management: The recommended dose of suvorexant is 5 mg daily in patients receiving a moderate CYP3A4 inhibitor. The dose can be increased to 10 mg daily (maximum dose) if necessary for efficacy. Consider therapy modification

Tamsulosin: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Tamsulosin. Monitor therapy

Terlipressin: May enhance the bradycardic effect of Bradycardia-Causing Agents. Monitor therapy

Tetrahydrocannabinol: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Tetrahydrocannabinol. Monitor therapy

Tezacaftor: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Tezacaftor. Management: When combined with moderate CYP3A4 inhibitors, tezacaftor/ivacaftor should be given in the morning, every other day. Ivacaftor alone should be given in the morning, every other day on alternate days from tezacaftor/ivacaftor. Consider therapy modification

Ticagrelor: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Ticagrelor. Monitor therapy

Tocilizumab: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Tofacitinib: May enhance the bradycardic effect of Bradycardia-Causing Agents. Monitor therapy

Tolvaptan: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Tolvaptan. Management: Jynarque dose requires adjustment when used with a moderate CYP3A4 inhibitor. See labeling or full interaction monograph for specific recommendations. Use of Samsca with moderate CYP3A4 ihibitors should generally be avoided. Consider therapy modification

Trabectedin: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Trabectedin. Monitor therapy

Udenafil: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Udenafil. Monitor therapy

Ulipristal: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Ulipristal. Management: This is specific for when ulipristal is being used for signs/symptoms of uterine fibroids (Canadian indication). When ulipristal is used as an emergency contraceptive, patients receiving this combination should be monitored for ulipristal toxicity. Avoid combination

Venetoclax: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Venetoclax. Management: Reduce the venetoclax dose by at least 50% in patients requiring these combinations. Consider therapy modification

Vilazodone: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Vilazodone. Monitor therapy

Vindesine: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Vindesine. Monitor therapy

Warfarin: Ceritinib may increase the serum concentration of Warfarin. Monitor therapy

Zopiclone: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Zopiclone. Management: The starting adult dose of zopiclone should not exceed 3.75 mg if combined with a moderate CYP3A4 inhibitor. Monitor patients for signs and symptoms of zopiclone toxicity if these agents are combined. Consider therapy modification

Zuclopenthixol: CYP3A4 Inhibitors (Moderate) may increase the serum concentration of Zuclopenthixol. Monitor therapy

Adverse Reactions

>10%:

Cardiovascular: Prolonged Q-T interval on ECG (4% to 12%)

Central nervous system: Fatigue (45% to 52%), noncardiac chest pain (21%), headache (19%), neuropathy (17%), dizziness (12%)

Dermatologic: Skin rash (16% to 21%), pruritus (11%)

Endocrine & metabolic: Increased gamma-glutamyl transferase (84%), hyperglycemia (49% to 53%), decreased serum phosphate (36% to 38%), weight loss (24%)

Gastrointestinal: Diarrhea (56% to 86%), nausea (45% to 80%), vomiting (35% to 67%), abdominal pain (40% to 54%), increased serum amylase (37%), decreased appetite (34%), constipation (20% to 29%), increased serum lipase (13% to 28%), dyspepsia (≤16%), dysphagia (≤16%), gastroesophageal reflux disease (≤16%)

Hematologic & oncologic: Anemia (67% to 84%; grades 3/4: 4% to 5%), neutropenia (27%; grades 3/4: 2%), thrombocytopenia (16%; grades 3/4: 1%)

Hepatic: Increased serum ALT (80% to 91%; >5x ULN: 28%), increased serum AST (75% to 86%; >5x ULN: 16%), increased serum alkaline phosphatase (81%), increased serum bilirubin (15%)

Neuromuscular & skeletal: Back pain (19%), limb pain (13%), musculoskeletal pain (11%)

Renal: Increased serum creatinine (58% to 77%)

Respiratory: Cough (25%)

Miscellaneous: Fever (19%)

1% to 10%:

Cardiovascular: Pericarditis (4%), bradycardia (1% to 4%) pericardial effusion (≥2%), sinus bradycardia (1%)

Central nervous system: Seizure (≥2%)

Endocrine & metabolic: Dehydration (≥2%)

Hepatic: Hepatotoxicity (2%)

Ophthalmic: Visual disturbance (4% to 9%)

Renal: Renal failure (2%)

Respiratory: Pleural effusion (4%), pneumonia (4%), interstitial pulmonary disease (2% to 4%), pulmonary infection (≥2%), severe dyspnea (≥2%)

<1%, postmarketing and/or case reports: Pancreatitis

Warnings/Precautions

Concerns related to adverse effects:

• Bradycardia: Symptomatic bradycardia has been reported; heart rate <50 beats/minute has occurred. If possible, avoid concurrent use with other agents known to cause bradycardia (eg, beta blockers, nondihydropyridine calcium channel blockers, clonidine, digoxin). Monitor heart rate and blood pressure regularly. If symptomatic bradycardia (not life-threatening) occurs, withhold treatment until recovery to asymptomatic bradycardia or to a heart rate of ≥60 beats/minute, evaluate concurrent medications, and adjust ceritinib dose. Permanently discontinue for life-threatening bradycardia due to ceritinib; if life-threatening bradycardia occurs and concurrent medications associated with bradycardia can be discontinued or dose adjusted, restart ceritinib at a reduced dose (with frequent monitoring).

• Gastrointestinal toxicity: Severe and/or persistent gastrointestinal toxicity has occurred with ceritinib (at a dose of 750 mg in a fasted state). Diarrhea, nausea, vomiting, or abdominal pain occurred in the majority of patients in clinical trials using ceritinib 750 mg daily fasted (including some grade 3 and 4 events); over one-third of patients required treatment interruptions or dose reductions due to severe or persistent gastrointestinal toxicity. The incidence and severity of gastrointestinal toxicity were reduced in a clinical study utilizing ceritinib 450 mg daily with food (Cho 2017); most events were grade 1. Manage symptoms medically with appropriate therapy (eg, antidiarrheals, antiemetics, fluid replacement) as indicated. May require therapy interruption and/or dosage reduction. Ceritinib is associated with a moderate emetic potential (Hesketh 2017; Roila 2016); antiemetics may be needed to prevent nausea and vomiting. If vomiting occurs, do not administer an additional dose; continue with the next scheduled dose.

• Hepatotoxicity: Hepatotoxicity has been observed in patients treated with ceritinib in clinical trials, including ALT levels >5 times ULN in over one-quarter of patients and AST elevations in nearly one-fifth of patients. Concurrent ALT elevations >3 times ULN with total bilirubin >2 times ULN (with normal alkaline phosphatase) occurred rarely. Monitor liver function tests (eg, ALT, AST, total bilirubin) monthly and as clinically necessary, more frequently in patients who develop transaminase abnormalities. May require therapy interruption, dosage reduction, and/or permanent discontinuation.

• Hyperglycemia: Hyperglycemia, including grade 3 and 4 toxicity, has been observed in ceritinib-treated patients. Monitor fasting blood glucose levels at baseline and as clinically necessary. May require initiation or optimization of antihyperglycemic therapy. Temporarily interrupt therapy for hyperglycemia until adequately controlled; reduce dose upon recovery. If adequate glycemic control is not possible with medical management, permanently discontinue ceritinib.

• Pancreatitis: Although rare, pancreatitis (with fatality) has been reported. Grade 3 to 4 lipase and amylase elevations occurred in clinical trials. Monitor lipase and amylase prior to treatment and periodically during treatment as clinically necessary. May require treatment interruption and dose reduction.

• Pulmonary toxicity: Severe and life-threatening interstitial lung disease (ILD)/pneumonitis have been reported, including grade 3 or 4 events and fatalities. Monitor for signs/symptoms of pulmonary toxicity; permanently discontinue in patients diagnosed with treatment-related ILD/pneumonitis.

• QTc prolongation: QTc interval prolongation has occurred in clinical studies, and may be concentration-dependent. Based on post-baseline ECG assessment, a QTc interval increase of >60 msec over baseline was observed in a small percentage of patients; some patients experienced a QTc >500 msec (when taking ceritinib 750 mg daily fasted). QT prolongation may lead to an increased risk for ventricular tachyarrhythmias (eg, torsades de pointes) or sudden death. Avoid use in patients with congenital long QTc syndrome. Correct electrolyte abnormalities prior to initiating therapy. Periodically monitor ECG and electrolytes in patients with heart failure, bradyarrhythmias, electrolyte abnormalities, or who are taking medications known to prolong the QTc interval. QT prolongation may require treatment interruption, dosage reduction, or discontinuation. Permanently discontinue in patients who develop QTc interval prolongation in combination with torsades de pointes or polymorphic ventricular tachycardia or signs/symptoms of serious arrhythmia.

Disease-related concerns:

• Hepatic impairment: Systemic exposure is increased and reduced initial doses are recommended in patients with severe impairment (Child-Pugh class C).

Concurrent drug therapy issues:

• Drug-drug interactions: Potentially significant interactions may exist, requiring dose or frequency adjustment, additional monitoring, and/or selection of alternative therapy. Consult drug interactions database for more detailed information.

Other warnings/precautions:

• Administration: A pharmacokinetic study determined that ceritinib 450 mg once daily administered with food had similar exposure and with lower GI toxicities when compared to 750 mg administered in a fasted state (Cho 2017). Based on this, the recommended ceritinib dose is now 450 mg once daily with food.

• Anaplastic lymphoma kinase testing: Approved for use only in patients with metastatic non-small cell lung cancer (NSCLC) who test positive for the abnormal anaplastic lymphoma kinase (ALK) gene. Information on approved tests for detection of ALK gene rearrangements may be found at http://www.fda.gov/CompanionDiagnostics.

Monitoring Parameters

ALK positivity; renal function, liver function (ALT, AST, total bilirubin at baseline, monthly and as clinically necessary, more frequently in patients who develop transaminase abnormalities), fasting blood glucose (baseline and as clinically necessary), lipase and amylase (baseline and periodically as clinically necessary); electrolytes (baseline and periodically thereafter); cardiac monitoring (heart rate and QTc interval; ECG in patients with heart failure, bradyarrhythmias, electrolyte abnormalities, or on concomitant medications known to prolong the QTc interval); blood pressure; signs/symptoms of gastrointestinal, pulmonary toxicity, and/or pancreatitis. Monitor adherence.

Pregnancy Considerations

Based on findings in animal reproduction studies and its mechanism of action, ceritinib may cause fetal harm if administered to a pregnant woman. Women of reproductive potential should use effective contraception during treatment and for 6 months following therapy discontinuation. Based on the potential for genotoxicity, males with female partners of reproductive potential should use condoms during treatment and for 3 months following completion of therapy.

Patient Education

• Discuss specific use of drug and side effects with patient as it relates to treatment. (HCAHPS: During this hospital stay, were you given any medicine that you had not taken before? Before giving you any new medicine, how often did hospital staff tell you what the medicine was for? How often did hospital staff describe possible side effects in a way you could understand?)

• Patient may experience constipation, heartburn, weight loss, back pain, muscle pain, cough, headache, or lack of appetite. Have patient report immediately to prescriber signs of high blood sugar (confusion, fatigue, increased thirst, increased hunger, polyuria, flushing, fast breathing, or breath that smells like fruit), signs of liver problems (dark urine, fatigue, lack of appetite, nausea, abdominal pain, light-colored stools, vomiting, or jaundice), signs of pancreatitis (severe abdominal pain, severe back pain, severe nausea, or vomiting), signs of a severe pulmonary disorder (lung or breathing problems like difficulty breathing, shortness of breath, or a cough that is new or worse), bruising, bleeding, tachycardia, bradycardia, abnormal heartbeat, chest pain, passing out, dizziness, burning or numbness feeling, chills, severe loss of strength and energy, severe abdominal pain, severe nausea, severe vomiting, severe diarrhea, change in balance, muscle weakness, or vision changes (HCAHPS).

• Educate patient about signs of a significant reaction (eg, wheezing; chest tightness; fever; itching; bad cough; blue skin color; seizures; or swelling of face, lips, tongue, or throat). Note: This is not a comprehensive list of all side effects. Patient should consult prescriber for additional questions.

Intended Use and Disclaimer: Should not be printed and given to patients. This information is intended to serve as a concise initial reference for health care professionals to use when discussing medications with a patient. You must ultimately rely on your own discretion, experience, and judgment in diagnosing, treating, and advising patients.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.

Hide