Drug Interaction Report
3 potential interactions and/or warnings found for the following 2 drugs:
- allogeneic processed thymus tissue
- betamethasone / iodixanol / lidocaine
Interactions between your drugs
betamethasone allogeneic processed thymus tissue
Applies to: betamethasone / iodixanol / lidocaine, allogeneic processed thymus tissue
MONITOR CLOSELY: Prolonged use of immunosuppressants, particularly high-dose corticosteroids, after administration of allogenic thymocyte-depleted thymus tissue implant, may increase the risk of damage to the implant. However, Graft Versus Host Disease (GVHD) may be caused by or exacerbated by allogenic thymocyte-depleted thymus tissue implant in patients with congenital athymia and require treatment with systemic immunosuppressive therapy. In addition, patients with congenital athymia are at an increased risk of autologous GVHD (aGVHD), which may also require systemic immunosuppressive therapy, including treatment with corticosteroids such as methylprednisolone and prednisolone.
MANAGEMENT: The manufacturer advises that prolonged use of immunosuppressive therapies, including high-dose corticosteroids, should be avoided in patients who have received an allogenic thymocyte-depleted thymus tissue implant. Some authorities consider the use of high-dose corticosteroids in the period immediately after implant to be contraindicated and generally advise against the use of pulse corticosteroids (such as methylprednisolone 30 to 40 mg/kg/day for 3 days) post-implant due to the potential for permanent damage to the implant. If immunosuppressive therapy is required post-implant, patients should be closely monitored for signs of damage to the implant as well as adverse effects from the concomitant immunosuppressant(s). The concomitant immunosuppressant(s) should be weaned as soon as clinically possible.
References (2)
- (2021) "Product Information. Rethymic (allogeneic processed thymus tissue)." Enzyvant Therapeutics Inc., 1
- Gupton, S.E, McCarthy, E.A, Markert, M.L (2021) "Care of children with DiGeorge before and after cultured thymus tissue implantation" J Clin Immunol, 41, p. 896-905
Drug and food interactions
lidocaine food
Applies to: betamethasone / iodixanol / lidocaine
MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.
MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.
MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.
References (7)
- Huet PM, LeLorier J (1980) "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther, 28, p. 208-15
- (2024) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc.
- (2015) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation
- (2022) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd
- (2022) "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd
- Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/
- Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/
lidocaine food
Applies to: betamethasone / iodixanol / lidocaine
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No duplication warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
See also:
Copaxone
Copaxone is used to treat relapsing forms of multiple sclerosis (MS) in adults (including ...
Mounjaro
Mounjaro is used for type 2 diabetes to help lower blood sugar levels. Mounjaro has also been shown ...
Mozobil
Mozobil helps patients with non-Hodgkin's lymphoma by releasing stem cells that can be collected ...
Xolremdi
Xolremdi is used to treat WHIM syndrome in adults and children 12 years of age and older to ...
Plerixafor
Plerixafor systemic is used for hematopoietic stem cell mobilization, multiple myeloma ...
Mavorixafor
Mavorixafor is used to treat WHIM syndrome (warts, hypogammaglobulinemia, infections, and ...
Glatiramer
Glatiramer acetate (brand name Copaxone, Glatopa, and generics) is used to treat relapsing forms of ...
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.