Skip to Content

Emagrin Forte (old formulation) (acetaminophen / caffeine / guaifenesin / phenylephrine) Disease Interactions

There are 16 disease interactions with Emagrin Forte (old formulation) (acetaminophen / caffeine / guaifenesin / phenylephrine):

Major

Acetaminophen (Includes Emagrin Forte (old formulation)) ↔ Alcoholism

Severe Potential Hazard, High plausibility

Applies to: Alcoholism

Chronic alcohol abusers may be at increased risk of hepatotoxicity during treatment with acetaminophen (APAP). Severe liver injury, including cases of acute liver failure resulting in liver transplant and death, has been reported in patients using acetaminophen. Therapy with acetaminophen should be administered cautiously, if at all, in patients who consume three or more alcoholic drinks a day. In general, patients should avoid drinking alcohol while taking acetaminophen-containing medications. Patients should be warned not to exceed the maximum recommended total daily dosage of acetaminophen (4 g/day in adults and children 12 years of age or older), and to read all prescription and over-the-counter medication labels to ensure they are not taking multiple acetaminophen-containing products, or check with a healthcare professional if they are unsure. They should also be advised to seek medical attention if they experience signs and symptoms of liver injury such as fever, rash, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, and jaundice.

References

  1. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  2. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  3. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med 145 (1985): 2019-23
  4. O'Dell JR, Zetterman RK, Burnett DA "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA 255 (1986): 2636-7
  5. Kartsonis A, Reddy KR, Schiff ER "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med 105 (1986): 138-9
  6. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
  7. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical, Raritan, NJ.
  8. Nelson EB, Temple AR "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  9. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA 244 (1980): 251-3
  10. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med 104 (1986): 399-404
  11. Prescott LF, Critchley JA "Drug interactions affecting analgesic toxicity." Am J Med 75 (1983): 113-6
View all 11 references
Major

Acetaminophen (Includes Emagrin Forte (old formulation)) ↔ Liver Disease

Severe Potential Hazard, High plausibility

Applies to: Liver Disease

Acetaminophen is primarily metabolized in the liver to inactive forms. However, small quantities are converted by minor pathways to metabolites that can cause hepatotoxicity or methemoglobinemia. Patients with hepatic impairment may be at increased risk of toxicity due to increased minor metabolic pathway activity. Likewise, chronic or overuse of acetaminophen can saturate the primary hepatic enzymes and lead to increased metabolism by minor pathways. Severe liver injury, including cases of acute liver failure resulting in liver transplant and death, has been reported in patients using acetaminophen. Therapy with acetaminophen should be administered cautiously in patients with hepatic insufficiency. Clinical monitoring of hepatic function is recommended. Instruct patients to avoid drinking alcohol while taking acetaminophen-containing medications. Patients should be warned not to exceed the maximum recommended total daily dosage of acetaminophen (4 g/day in adults and children 12 years of age or older), and to read all prescription and over-the-counter medication labels to ensure they are not taking multiple acetaminophen-containing products, or check with a healthcare professional if they are unsure.

References

  1. Gillette JR "An integrated approach to the study of chemically reactive metabolites of acetaminophen." Arch Intern Med 141 (1981): 375-9
  2. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical, Raritan, NJ.
  3. Arnman R, Olsson R "Elimination of paracetamol in chronic liver disease." Acta Hepatogastroenterol (Stuttg) 25 (1978): 283-6
  4. Clements JA, Critchley JA, Prescott LF "The role of sulphate conjugation in the metabolism and disposition of oral and intravenous paracetamol in man." Br J Clin Pharmacol 18 (1984): 481-5
  5. Forrest JA, Adriaenssens P, Finlayson ND, Prescott LF "Paracetamol metabolism in chronic liver disease." Eur J Clin Pharmacol 15 (1979): 427-31
  6. Venkataramanan R, Kalp K, Rabinovitch M, et al "Conjugative drug metabolism in liver transplant patients." Transplant Proc 21 (1989): 2455
View all 6 references
Major

Cns Stimulants (Includes Emagrin Forte (old formulation)) ↔ Cardiac Disease

Severe Potential Hazard, Moderate plausibility

Applies to: Hypertension, Hyperthyroidism, Heart Disease, Pheochromocytoma, Peripheral Arterial Disease

The use of CNS stimulants is contraindicated in patients with significant cardiovascular impairment such as uncompensated heart failure, severe coronary disease, severe hypertension (including that associated with hyperthyroidism or pheochromocytoma), cardiac structural abnormalities, serious arrhythmias, etc. Sudden death has been reported in adults and children taking CNS stimulant treatment. Additionally, stroke, myocardial infarction, chest pain, syncope, arrhythmias and other symptoms have been reported in adults under treatment. A careful assessment of the cardiovascular status should be done in patients being considered for treatment. This includes family history, physical exam and further cardiac evaluation (EKG and echocardiogram). Patients who develop symptoms should have a detailed cardiac evaluation and if needed, treatment should be suspended.

References

  1. "Product Information. Dopram (doxapram)." West-Ward Pharmaceutical Corporation, Eatontown, NJ.
Major

Cns Stimulants (Includes Emagrin Forte (old formulation)) ↔ Hypertension

Severe Potential Hazard, Moderate plausibility

Applies to: Hypertension

CNS stimulant medications have shown to increase blood pressure and their use is contraindicated in patients with severe hypertension. Caution should be used when administering to patients with preexisting high blood pressure and other cardiovascular conditions. All patients under treatment should be regularly monitored for changes in blood pressure and heart rate.

References

  1. "Product Information. Dopram (doxapram)." West-Ward Pharmaceutical Corporation, Eatontown, NJ.
Major

Cns Stimulants (Includes Emagrin Forte (old formulation)) ↔ Liver Disease

Severe Potential Hazard, Moderate plausibility

Applies to: Liver Disease

In general, CNS stimulants are extensively metabolized by the liver. Their plasma clearance may be decreased and their half-life prolonged in patients with impaired hepatic function. Therapy with CNS stimulants should be administered cautiously in patients with moderate to severe liver disease, and the dosage should be adjusted accordingly. Additionally, postmarketing reports have shown that atomoxetine can cause severe liver injury. Laboratory testing should be done at the first sign or symptom of liver dysfunction (jaundice, dark urine, upper quadrant tenderness) and treatment should be discontinued in patients with evidence of liver injury.

References

  1. "Product Information. Provigil (modafinil)." Cephalon, Inc, West Chester, PA.
Major

Cns Stimulants (Includes Emagrin Forte (old formulation)) ↔ Seizure Disorders

Severe Potential Hazard, Moderate plausibility

Applies to: Seizures

Due to general central nervous system stimulation, therapy with CNS stimulant drugs may cause seizures. These drugs may lower the convulsive threshold in patients with prior history of seizures or EEG abnormalities, and very rarely in patients with no previous history of seizures. Therapy with CNS stimulants should be used with caution in patients with or predisposed to seizures. If seizures appear, therapy should be discontinued.

References

  1. American Medical Association, Division of Drugs and Toxicology "Drug evaluations annual 1994." Chicago, IL: American Medical Association; (1994):
Major

Methylxanthines (Includes Emagrin Forte (old formulation)) ↔ Pud

Severe Potential Hazard, High plausibility

Applies to: Peptic Ulcer

Methylxanthines are known to stimulate peptic acid secretion. Therapy with products containing methylxanthines should be administered with extreme caution in patients with active peptic ulcer disease. Some manufacturers consider their use to be contraindicated under such circumstance.

References

  1. "Product Information. Theo-Dur (theophylline)." Schering Laboratories, Kenilworth, NJ.
  2. Stoller JL "Oesophageal ulceration and theophylline." Lancet 2 (1985): 328-9
  3. Alterman P, Spiegel D, Feldman J, Yaretzky A "Histamine h2-receptor antagonists and chronic theophylline toxicity." Am Fam Physician 54 (1996): 1473
  4. "Product Information. Lufyllin (dyphylline)" Wallace Laboratories, Cranbury, NJ.
View all 4 references
Major

Sympathomimetics (Includes Emagrin Forte (old formulation)) ↔ Cardiovascular Disease

Severe Potential Hazard, High plausibility

Applies to: Cardiovascular Disease, Cerebrovascular Insufficiency, Hyperthyroidism, Pheochromocytoma

Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.

References

  1. Covington TR, Lawson LC, Young LL, eds. "Handbook of Nonprescription Drugs. 10th ed." Washington, DC: American Pharmaceutical Association (1993):
  2. Horowitz JD, Lang WJ, Howes LG, Fennessy MR, Christophidis N, Rand MJ, Louis WJ "Hypertensive responses induced by phenylpropanolamine in anorectic and decongestant preparations." Lancet 1 (1980): 60-1
  3. Frewin DB "Phenylpropanolamine. How safe is it?" Med J Aust 2 (1983): 54-5
  4. Leo PJ, Hollander JE, Shih RD, Marcus SM "Phenylpropanolamine and associated myocardial injury." Ann Emerg Med 28 (1996): 359-62
  5. American Medical Association, Division of Drugs and Toxicology "Drug evaluations annual 1994." Chicago, IL: American Medical Association; (1994):
  6. Frewin DB, Leonello PP, Frewin ME "Hypertension after ingestion of Trimolets." Med J Aust 2 (1978): 497-8
  7. Mansoor GA "Herbs and alternative therapies in the hypertension clinic." Am J Hypertens 14(9 Pt 1) (2001): 971-5
  8. Elliott CF, Whyte JC "Phenylpropanolamine and hypertension." Med J Aust 1 (1981): 715
  9. Kroenke K, Omori DM, Simmons JO, Wood DR, Meier NJ "The safety of phenylpropanolamine in patients with stable hypertension." Ann Intern Med 111 (1989): 1043-4
  10. Kase CS, Foster TE, Reed JE, Spatz EL, Girgis GN "Intracerebral hemorrhage and phenylpropanolamine use." Neurology 37 (1987): 399-404
  11. Noble R "A controlled clinical trial of the cardiovascular and psychological effects of phenylpropanolamine and caffeine." Drug Intell Clin Pharm 22 (1988): 296-9
  12. Gordon RD, Ballantine DM, Bachmann AW "Effects of repeated doses of pseudoephedrine on blood pressure and plasma catecholamines in normal subjects and in patients with phaeochromocytoma." Clin Exp Pharmacol Physiol 19 (1992): 287-90
  13. Shapiro SR "Hypertension due to anorectic agent." N Engl J Med 280 (1969): 1363
  14. Kikta DG, Devereaux MW, Chandar K "Intracranial hemorrhages due to phenylpropanolamine." Stroke 16 (1985): 510-2
  15. Lee KY, Beilin LJ, Vandongen R "Severe hypertension after ingestion of an appetite suppressant (phenylpropanolamine) with indomethacin." Lancet 1 (1979): 1110-1
  16. Bernstein E, Diskant BM "Phenylpropanolamine: a potentially hazardous drug." Ann Emerg Med 11 (1982): 311-5
  17. Lee KY, Beilin LJ, Vandongen R "Severe hypertension after administration of phenylpropanolamine" Med J Aust 1 (1979): 525-6
  18. Loizou LA, Hamilton JG, Tsementzis SA "Intracranial haemorrhage in association with pseudoephedrine overdose." J Neurol Neurosurg Psychiatry 45 (1982): 471-2
  19. Teh AY "Phenylpropanolamine and hypertension" Med J Aust 2 (1979): 425-6
  20. Fallis RJ, Fisher M "Cerebral vasculitis and hemorrhage associated with phenylpropanolamine." Neurology 35 (1985): 405-7
  21. Edwards M, Russo L, Harwood-Nuss A "Cerebral infarction with a single oral dose of phenylpropanolamine." Am J Emerg Med 5 (1987): 163-4
  22. Dickerson J, Perrier D, Mayersohn M, Bressler R "Dose tolerance and pharmacokinetic studies of L (+) pseudoephedrine capsules in man." Eur J Clin Pharmacol 14 (1978): 253-9
  23. McDowell JR, LeBlanc HJ "Phenylpropanolamine and cerebral hemorrhage." West J Med 142 (1985): 688-91
  24. Howrie DL, Wolfson JH "Phenylpropanolamine-induced hypertensive seizures." J Pediatr 102 (1983): 143-5
  25. Bruno A, Nolte KB, Chapin J "Stroke associated with ephedrine use." Neurology 43 (1993): 1313-6
  26. Williams DM "Phenylpropanolamine hydrochloride" Am Pharm NS30 (1990): 47-50
  27. "Product Information. Sudafed (pseudoephedrine)." Glaxo Wellcome, Research Triangle Park, NC.
  28. Lake CR, Zaloga G, Bray J, Rosenberg D, Chernow B "Transient hypertension after two phenylpropanolamine diet aids and the effects of caffeine: a placebo-controlled follow-up study." Am J Med 86 (1989): 427-32
  29. Wiener I, Tilkian AG, Palazzolo M "Coronary artery spasm and myocardial infarction in a patient with normal coronary arteries: temporal relationship to pseudoephedrine ingestion." Cathet Cardiovasc Diagn 20 (1990): 51-3
  30. McEwen J "Phenylpropanolamine-associated hypertension after the use of "over- the-counter" appetite-suppressant products." Med J Aust 2 (1983): 71-3
  31. Lake CR, Zaloga G, Clymer R, Quirk RM, Chernow B "A double dose of phenylpropanolamine causes transient hypertension." Am J Med 85 (1988): 339-43
  32. Kizer KW "Intracranial hemorrhage associated with overdose of decongestant containing phenylpropanolamine" Am J Emerg Med 2 (1984): 180-1
  33. Wooten MR, Khangure MS, Murphy MJ "Intracerebral hemorrhage and vasculitis related to ephedrine abuse." Ann Neurol 13 (1983): 337-40
  34. O'Connell MB, Gross CR "The effect of single-dose phenylpropanolamine on blood pressure in patients with hypertension controlled by beta blockers." Pharmacotherapy 10 (1990): 85-91
  35. Stoessl AJ, Young GB, Feasby TE "Intracerebral haemorrhage and angiographic beading following ingestion of catecholaminergics." Stroke 16 (1985): 734-6
  36. Chin C, Choy M "Cardiomyopathy induced by phenylpropanolamine." J Pediatr 123 (1993): 825-7
  37. O'Connell MB, Gross CR "The effect of multiple doses of phenylpropanolamine on the blood pressure of patients whose hypertension was controlled with beta blockers." Pharmacotherapy 11 (1991): 376-81
  38. Gill ND, Shield A, Blazevich AJ, Zhou S, Weatherby RP "Muscular and cardiorespiratory effects of pseudoephedrine in human athletes." Br J Clin Pharmacol 50 (2000): 205-13
  39. Johnson DA, Etter HS, Reeves DM "Stroke and phenylpropanolamine use" Lancet 2 (1983): 970
  40. Pentel PR, Aaron C, Paya C "Therapeutic doses of phenylpropanolamine increase supine systolic blood pressure." Int J Obes 9 (1985): 115-9
  41. Lake CR, Gallant S, Masson E, Miller P "Adverse drug effects attributed to phenylpropanolamine: a review of 142 case reports." Am J Med 89 (1990): 195-208
  42. Rosen RA "Angina associated with pseudoephedrine ." Ann Emerg Med 10 (1981): 230-1
  43. Humberstone PM "Hypertension from cold remedies." Br Med J 1 (1969): 846
  44. Samenuk D, Link MS, Homoud MK, et al. "Adverse cardiovascular events temporally associated with ma huang, an herbal source of ephedrine." Mayo Clin Proc 77 (2002): 12-6
  45. Maher LM, Peterson PL, Dela-Cruz C "Postpartum intracranial hemorrhage and phenylpropanolamine use" Neurology 37 (1987): 1686
  46. Dowse R, Scherzinger SS, Kanfer I "Serum concentrations of phenylpropanolamine and associated effects on blood pressure in normotensive subjects: a pilot-study." Int J Clin Pharmacol Ther Toxicol 28 (1990): 205-10
  47. Haller CA, Benowitz NL "Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids." N Engl J Med 343 (2000): 1833-8
  48. Gibson GJ, Warrell DA "Hypertensive crises and phenylpropanolamine." Lancet 2 (1972): 492-3
  49. Horowitz JD, McNeil JJ, Sweet B, Mendelsohn FA, Louis WJ "Hypertension and postural hypotension induced by phenylpropanolamine (Trimolets)." Med J Aust 1 (1979): 175-6
  50. Finton CK, Barton M, Chernow B "Possible adverse effects of phenylpropanolamine (diet pills) on sympathetic nervous system function--caveat emptor!" Mil Med 147 (1982): 1072
  51. Clark JE, Simon WA "Cardiac arrhythmias after phenylpropanolamine ingestion." Drug Intell Clin Pharm 17 (1983): 737-8
  52. Maher LM, Peterson PL, Dela-Cruz C "Postpartum intracranial hemorrhage and phenylpropanolamine use." Neurology 37 (1987): 1886,1890
  53. Caperton E "Raynaud's phenomenon. Role of diet pills and cold remedies." Postgrad Med 73 (1983): 291-2
  54. To LB, Sangster JF, Rampling D, Cammens I "Ephedrine-induced cardiomyopathy." Med J Aust 2 (1980): 35-6
  55. Mariani PJ "Pseudoephedrine-induced hypertensive emergency: treatment with labetalol." Am J Emerg Med 4 (1986): 141-2
  56. Pentel PR, Mikell FL, Zavoral JH "Myocardial injury after phenylpropanolamine ingestion." Br Heart J 47 (1982): 51-4
View all 56 references
Moderate

Acetaminophen (Includes Emagrin Forte (old formulation)) ↔ Pku

Moderate Potential Hazard, High plausibility

Applies to: Phenylketonuria

Several oral acetaminophen and acetaminophen-combination products, particularly flavored chewable tablets, contain the artificial sweetener, aspartame (NutraSweet). Aspartame is converted to phenylalanine in the gastrointestinal tract following ingestion. Chewable and effervescent formulations of acetaminophen products may also contain phenylalanine. The aspartame/phenylalanine content should be considered when these products are used in patients who must restrict their intake of phenylalanine (i.e. phenylketonurics).

References

  1. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical, Raritan, NJ.
Moderate

Caffeine (Includes Emagrin Forte (old formulation)) ↔ Cardiotoxicity

Moderate Potential Hazard, Moderate plausibility

Applies to: Tachyarrhythmia, Myocardial Infarction, Post MI Syndrome, Hypertension, Hyperthyroidism, Angina Pectoris

Like other methylxanthines, caffeine at high dosages may be associated with positive inotropic and chronotropic effects on the heart. Caffeine may also produce an increase in systemic vascular resistance, resulting in elevation of blood pressure. Therapy with products containing caffeine should be administered cautiously in patients with severe cardiac disease, hypertension, hyperthyroidism, or acute myocardial injury. Some clinicians recommend avoiding caffeine in patients with symptomatic cardiac arrhythmias and/or palpitations and during the first several days to weeks after an acute myocardial infarction.

References

  1. "Multum Information Services, Inc. Expert Review Panel"
Moderate

Cns Stimulants (Includes Emagrin Forte (old formulation)) ↔ Psychiatric Disorders

Moderate Potential Hazard, Moderate plausibility

Applies to: Psychosis, Depression

The use of CNS stimulants can cause psychotic or maniac symptoms, suicidal ideation, aggression and can exacerbate symptoms of behavior disturbance and thought disorder. Psychiatric symptoms have been reported in patients with and without history of psychiatric disorders, and all patients should be monitored closely, specially during treatment initiation and at times of dose changes. Extreme caution should be exercised when CNS stimulants are given to patients with a history of psychosis, depression, mania, or bipolar disorder. All patients receiving treatment should be screened for bipolar disease prior to initiation. If any psychiatric symptoms emerge or are exacerbated, treatment suspension should be considered. CNS stimulants are contraindicated in patients with marked agitation or anxiety.

References

  1. "Product Information. Provigil (modafinil)." Cephalon, Inc, West Chester, PA.
Moderate

Cns Stimulants (Includes Emagrin Forte (old formulation)) ↔ Renal Dysfunction

Moderate Potential Hazard, Moderate plausibility

Applies to: Renal Dysfunction

Overall CNS stimulants should be administered with caution in patients with significantly impaired renal function as the reduction in the rate of elimination may alter the therapeutic response. The dosage should be adjusted accordingly.

References

  1. "Product Information. Provigil (modafinil)." Cephalon, Inc, West Chester, PA.
Moderate

Methylxanthines (Includes Emagrin Forte (old formulation)) ↔ Gerd

Moderate Potential Hazard, High plausibility

Applies to: Gastroesophageal Reflux Disease

Methylxanthines increase gastric acidity and may also relax lower esophageal sphincter, which can lead to gastric reflux into the esophagus. Therapy with products containing methylxanthines should be administered cautiously in patients with significant gastroesophageal reflux.

References

  1. American Medical Association, Division of Drugs and Toxicology "Drug evaluations annual 1994." Chicago, IL: American Medical Association; (1994):
  2. Stoller JL "Oesophageal ulceration and theophylline." Lancet 2 (1985): 328-9
  3. "Product Information. Lufyllin (dyphylline)" Wallace Laboratories, Cranbury, NJ.
  4. Alterman P, Spiegel D, Feldman J, Yaretzky A "Histamine h2-receptor antagonists and chronic theophylline toxicity." Am Fam Physician 54 (1996): 1473
View all 4 references
Moderate

Sympathomimetics (Includes Emagrin Forte (old formulation)) ↔ Bph

Moderate Potential Hazard, High plausibility

Applies to: Benign Prostatic Hyperplasia, Prostate Tumor

Sympathomimetic agents may cause or worsen urinary difficulty in patients with prostate enlargement due to smooth muscle contraction in the bladder neck via stimulation of alpha-1 adrenergic receptors. Therapy with sympathomimetic agents should be administered cautiously in patients with hypertrophy or neoplasm of the prostate.

References

  1. "Product Information. Sudafed (pseudoephedrine)." Glaxo Wellcome, Research Triangle Park, NC.
  2. Covington TR, Lawson LC, Young LL, eds. "Handbook of Nonprescription Drugs. 10th ed." Washington, DC: American Pharmaceutical Association (1993):
  3. Williams DM "Phenylpropanolamine hydrochloride" Am Pharm NS30 (1990): 47-50
Moderate

Sympathomimetics (Includes Emagrin Forte (old formulation)) ↔ Diabetes

Moderate Potential Hazard, Moderate plausibility

Applies to: Diabetes Mellitus

Sympathomimetic agents may cause increases in blood glucose concentrations. These effects are usually transient and slight but may be significant with dosages higher than those normally recommended. Therapy with sympathomimetic agents should be administered cautiously in patients with diabetes mellitus. Closer monitoring of blood glucose concentrations may be appropriate.

References

  1. "Product Information. Sudafed (pseudoephedrine)." Glaxo Wellcome, Research Triangle Park, NC.
  2. American Medical Association, Division of Drugs and Toxicology "Drug evaluations annual 1994." Chicago, IL: American Medical Association; (1994):
  3. Covington TR, Lawson LC, Young LL, eds. "Handbook of Nonprescription Drugs. 10th ed." Washington, DC: American Pharmaceutical Association (1993):
  4. Williams DM "Phenylpropanolamine hydrochloride" Am Pharm NS30 (1990): 47-50
View all 4 references
Moderate

Sympathomimetics (Includes Emagrin Forte (old formulation)) ↔ Glaucoma

Moderate Potential Hazard, Moderate plausibility

Applies to: Glaucoma/Intraocular Hypertension

Sympathomimetic agents can induce transient mydriasis via stimulation of alpha-1 adrenergic receptors. In patients with anatomically narrow angles or narrow-angle glaucoma, pupillary dilation can provoke an acute attack. In patients with other forms of glaucoma, mydriasis may occasionally increase intraocular pressure. Therapy with sympathomimetic agents should be administered cautiously in patients with or predisposed to glaucoma, particularly narrow-angle glaucoma.

References

  1. Covington TR, Lawson LC, Young LL, eds. "Handbook of Nonprescription Drugs. 10th ed." Washington, DC: American Pharmaceutical Association (1993):
  2. Fraunfelder FT, Fraunfelder FW; Randall JA "Drug-Induced Ocular Side Effects 5th" Boston, MA: Butterworth-Heinemann (2001):
  3. "Product Information. Sudafed (pseudoephedrine)." Glaxo Wellcome, Research Triangle Park, NC.

Emagrin Forte (old formulation) (acetaminophen / caffeine / guaifenesin / phenylephrine) drug Interactions

There are 507 drug interactions with Emagrin Forte (old formulation) (acetaminophen / caffeine / guaifenesin / phenylephrine)

Emagrin Forte (old formulation) (acetaminophen / caffeine / guaifenesin / phenylephrine) alcohol/food Interactions

There are 6 alcohol/food interactions with Emagrin Forte (old formulation) (acetaminophen / caffeine / guaifenesin / phenylephrine)

Drug Interaction Classification

The classifications below are a general guideline only. It is difficult to determine the relevance of a particular drug interaction to any individual given the large number of variables.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No information available.

Do not stop taking any medications without consulting your healthcare provider.

Disclaimer: Every effort has been made to ensure that the information provided by Multum is accurate, up-to-date and complete, but no guarantee is made to that effect. In addition, the drug information contained herein may be time sensitive and should not be utilized as a reference resource beyond the date hereof. This material does not endorse drugs, diagnose patients, or recommend therapy. Multum's information is a reference resource designed as supplement to, and not a substitute for, the expertise, skill, knowledge, and judgement of healthcare practitioners in patient care. The absence of a warning for a given drug or combination thereof in no way should be construed to indicate that the drug or combination is safe, effective, or appropriate for any given patient. Multum Information Services, Inc. does not assume any responsibility for any aspect of healthcare administered with the aid of information Multum provides. Copyright 2000-2018 Multum Information Services, Inc. The information contained herein is not intended to cover all possible uses, directions, precautions, warnings, drug interactions, allergic reactions, or adverse effects. If you have questions about the drugs you are taking, check with your doctor, nurse, or pharmacist.

Hide