Skip to Content

Nelfinavir

Medically reviewed by Drugs.com. Last updated on Jun 5, 2020.

Pronunciation

(nel FIN a veer)

Index Terms

  • NFV

Dosage Forms

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Tablet, Oral:

Viracept: 250 mg, 625 mg

Brand Names: U.S.

  • Viracept

Pharmacologic Category

  • Antiretroviral, Protease Inhibitor (Anti-HIV)

Pharmacology

Binds to the site of HIV-1 protease activity and inhibits cleavage of viral Gag-Pol polyprotein precursors into individual functional proteins required for infectious HIV. This results in the formation of immature, noninfectious viral particles.

Absorption

AUC is two- to threefold higher under fed conditions versus fasting; AUC is highly variable in pediatric patients due to increased clearance, problems with compliance, and inconsistent food intake with dosing.

Distribution

Vd: 2 to 7 L/kg

Metabolism

Hepatic via CYP2C19 and 3A4; major metabolite has activity comparable to parent drug

Excretion

Feces (98% to 99%, 78% as metabolites, 22% as unchanged drug); urine (1% to 2%)

Time to Peak

Serum: 2 to 4 hours

Half-Life Elimination

3.5 to 5 hours

Protein Binding

>98%

Special Populations: Hepatic Function Impairment

Cmax and AUC were increased 22% and 62%, respectively, in subjects with moderate hepatic impairment when compared with subjects with normal hepatic function. Patients with severe hepatic impairment were not studied.

Use: Labeled Indications

HIV-1 infection: In combination with other antiretroviral therapy in the treatment of HIV infection.

Note: Nelfinavir is no longer recommended for use in the treatment of HIV (HHS [adult] 2019).

Contraindications

Coadministration with drugs that are highly dependent on CYP3A for clearance and for which elevated or reduced plasma concentrations are associated with serious and/or life-threatening events or lead to reduced efficacy of nelfinavir (eg, alfuzosin, amiodarone, cisapride, ergot derivatives [eg, dihydroergotamine, ergonovine, ergotamine, methylergonovine], lovastatin, lurasidone, oral midazolam, pimozide, quinidine, rifampin, sildenafil [when used for the treatment of pulmonary hypertension], simvastatin, St John's wort, triazolam).

Canadian labeling: Additional contraindications (not in US labeling): Clinically significant hypersensitivity to nelfinavir or any component of the formulation; coadministration with midazolam (regardless of dosage form)

Dosing: Adult

HIV-1 infection, treatment: Oral: 750 mg 3 times daily or 1,250 mg twice daily with meals in combination with other antiretroviral therapies.Note: Nelfinavir is no longer recommended for use in the treatment of HIV (HHS [adult] 2019).

Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.

Dosing: Geriatric

Refer to adult dosing.

Dosing: Pediatric

HIV-1 infection, treatment: Use in combination with other antiretroviral agents: Oral:

Infants and Children <2 years: Not approved for use; a reliable, effective dose has not been established; high interpatient variability in serum drug concentrations occurs; nelfinavir dosing is problematic in young infants, since the drug is best absorbed when taken with a high-fat meal (HHS [pediatric] 2016; Hirt 2006).

Children ≥2 years: Note: Pediatric guidelines recommend twice-daily dosing (HHS [pediatric] 2016).

Weight-directed dosing: 45 to 55 mg/kg/dose (maximum dose: 1,250 mg/dose) twice daily or 25 to 35 mg/kg/dose (maximum dose: 750 mg/dose) 3 times daily; daily doses >2,500 mg/day have not been studied in children. Due to the high variability of nelfinavir plasma concentrations in children, dosage adjustment utilizing measurement of plasma concentrations and pharmacokinetics may be beneficial (Crommentuyn 2006; HHS [pediatric] 2016; Fletcher 2008).

Fixed dosing: Oral tablets (250 mg):

10 to <13 kg: 500 mg (2 tablets) twice daily or 250 mg (1 tablet) three times daily

13 to <19 kg: 750 mg (3 tablets) twice daily or 500 mg (2 tablets) three times daily

19 to <21 kg: 1,000 mg (4 tablets) twice daily or 500 mg (2 tablets) three times daily

≥21 kg: 1,000 to 1,250 mg (4 to 5 tablets) twice daily or 750 mg (3 tablets) three times daily

Adolescents: 1,250 mg twice daily or 750 mg three times daily. Note: Some adolescent patients require doses higher than adults to achieve similar nelfinavir AUCs; consider the use of serum drug concentrations to guide optimal dosing (HHS [pediatric] 2016).

Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.

Administration

Tablets: Administer with a meal. If unable to swallow tablets, may dissolve tablets in a small amount of water; mix cloudy liquid well and consume immediately. Rinse glass with water and administer rinse to ensure receiving full dose. Alternatively, the tablets may be crushed and mixed with a small amount of food; entire contents should be consumed immediately. Avoid mixing with acidic foods or juices as combination may result in a bitter taste (Viracept Canadian product monograph 2016).

Dietary Considerations

Should be taken as scheduled with a meal.

Storage

Store at room temperature of 15°C to 30°C (59°F to 86°F).

Drug Interactions

Abacavir: Protease Inhibitors may decrease the serum concentration of Abacavir. Monitor therapy

Abemaciclib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Abemaciclib. Management: In patients taking abemaciclib at a dose of 200 mg or 150 mg twice daily, reduce the dose to 100 mg twice daily when combined with strong CYP3A4 inhibitors. In patients taking abemaciclib 100 mg twice daily, decrease the dose to 50 mg twice daily. Consider therapy modification

Acalabrutinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Acalabrutinib. Avoid combination

Ado-Trastuzumab Emtansine: CYP3A4 Inhibitors (Strong) may increase serum concentrations of the active metabolite(s) of Ado-Trastuzumab Emtansine. Specifically, strong CYP3A4 inhibitors may increase concentrations of the cytotoxic DM1 component. Management: Avoid concomitant use of ado-trastuzumab emtansine and strong CYP3A4 inhibitors when possible. Consider alternatives that do not inhibit CYP3A4 or consider administering after CYP3A4 inhibitor discontinuation. Monitor for toxicities if combined. Consider therapy modification

Afatinib: Nelfinavir may increase the serum concentration of Afatinib. Management: Monitor for signs and symptoms of afatinib toxicity when these agents are combined. Consider administering nelfinavir simultaneously with, or after, the dose of afatinib. If the combination is not tolerated, consider reducing the afatinib dose by 10 mg. Monitor therapy

Alfentanil: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Alfentanil. Management: If use of alfentanil and strong CYP3A4 inhibitors is necessary, consider dosage reduction of alfentanil until stable drug effects are achieved. Frequently monitor patients for respiratory depression and sedation when these agents are combined. Consider therapy modification

Alfuzosin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Alfuzosin. Avoid combination

Alitretinoin (Systemic): CYP3A4 Inhibitors (Strong) may increase the serum concentration of Alitretinoin (Systemic). Management: Consider reducing the alitretinoin dose to 10 mg when used together with strong CYP3A4 inhibitors. Monitor for increased alitretinoin effects/toxicities if combined with a strong CYP3A4 inhibitor. Consider therapy modification

Almotriptan: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Almotriptan. Management: Limit initial almotriptan dose to 6.25 mg and maximum dose to 12.5 mg in any 24-period when used with a strong CYP3A4 inhibitor. Avoid concurrent use in patients with impaired hepatic or renal function. Consider therapy modification

Alosetron: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Alosetron. Monitor therapy

ALPRAZolam: CYP3A4 Inhibitors (Strong) may increase the serum concentration of ALPRAZolam. Management: Consider using an alternative agent that is less likely to interact. If combined, monitor for increased therapeutic/toxic effects of alprazolam if combined with a strong CYP3A4 inhibitor. Consider therapy modification

Amiodarone: Nelfinavir may increase the serum concentration of Amiodarone. Avoid combination

AmLODIPine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of AmLODIPine. Monitor therapy

Antidiabetic Agents: Hyperglycemia-Associated Agents may diminish the therapeutic effect of Antidiabetic Agents. Monitor therapy

Apixaban: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Apixaban. Monitor therapy

Aprepitant: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Aprepitant. Avoid combination

ARIPiprazole: CYP3A4 Inhibitors (Strong) may increase the serum concentration of ARIPiprazole. Management: Aripiprazole dose reductions are required for indications other than major depressive disorder. Dose reductions vary based on formulation, CYP2D6 genotype, and use of CYP2D6 inhibitors. See full interaction monograph for details. Consider therapy modification

ARIPiprazole Lauroxil: CYP3A4 Inhibitors (Strong) may increase serum concentrations of the active metabolite(s) of ARIPiprazole Lauroxil. Management: Decrease aripiprazole lauroxil dose to next lower strength if used with strong CYP3A4 inhibitors for over 14 days. No dose adjustment needed if using the lowest dose (441 mg). Max dose is 441 mg in CYP2D6 PMs or if also taking strong CYP2D6 inhibitors. Consider therapy modification

Astemizole: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Astemizole. Management: Drugs listed as exceptions to this monograph are discussed in further detail in separate drug interaction monographs. Avoid combination

Asunaprevir: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Asunaprevir. Avoid combination

AtorvaSTATin: Protease Inhibitors may increase the serum concentration of AtorvaSTATin. Management: See full monograph for recommended dose limits. Avoid atorvastatin with tipranavir/ritonavir. Consider therapy modification

Avanafil: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Avanafil. Avoid combination

Avapritinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Avapritinib. Avoid combination

Axitinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Axitinib. Management: Avoid concurrent use of axitinib with any strong CYP3A inhibitor whenever possible. If a strong CYP3A inhibitor must be used with axitinib, a 50% axitinib dose reduction is recommended. Consider therapy modification

Azithromycin (Systemic): Nelfinavir may increase the serum concentration of Azithromycin (Systemic). Monitor therapy

Barnidipine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Barnidipine. Avoid combination

Bedaquiline: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Bedaquiline. Management: Limit duration of concurrent use of bedaquiline with CYP3A4 inhibitors to no more than 14 days, unless the benefit of continued use outweighs the possible risks. Monitor for toxic effects of bedaquiline. Exceptions discussed in separate monographs. Consider therapy modification

Benperidol: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Benperidol. Monitor therapy

Benzhydrocodone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Benzhydrocodone. Specifically, the concentration of hydrocodone may be increased. Monitor therapy

Betamethasone (Ophthalmic): CYP3A4 Inhibitors (Strong) may increase the serum concentration of Betamethasone (Ophthalmic). Monitor therapy

Betamethasone (Systemic): CYP3A4 Inhibitors (Strong) may increase the serum concentration of Betamethasone (Systemic). Monitor therapy

Bictegravir: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Bictegravir. Monitor therapy

Blonanserin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Blonanserin. Avoid combination

Bortezomib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Bortezomib. Monitor therapy

Bosentan: Protease Inhibitors may increase the serum concentration of Bosentan. Management: Dose adjustment of bosentan and increased monitoring for bosentan toxicities is necessary when these agents are combined. See full drug interaction monograph for details. Consider therapy modification

Bosutinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Bosutinib. Avoid combination

Brentuximab Vedotin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Brentuximab Vedotin. Specifically, concentrations of the active monomethyl auristatin E (MMAE) component may be increased. Monitor therapy

Brexpiprazole: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Brexpiprazole. Management: Reduce brexpiprazole dose 50% with strong CYP3A4 inhibitors; reduce to 25% of usual if used with both a strong CYP3A4 inhibitor and a CYP2D6 inhibitor in patients not being treated for MDD, or strong CYP3A4 inhibitor used in a CYP2D6 poor metabolizer. Consider therapy modification

Brigatinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Brigatinib. Management: Avoid concurrent use of brigatinib with strong CYP3A4 inhibitors when possible. If combination cannot be avoided, reduce the brigatinib dose by approximately 50%, rounding to the nearest tablet strength (ie, from 180 mg to 90 mg, or from 90 mg to 60 mg). Consider therapy modification

Bromperidol: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Bromperidol. Monitor therapy

Budesonide (Nasal): CYP3A4 Inhibitors (Strong) may increase the serum concentration of Budesonide (Nasal). Monitor therapy

Budesonide (Oral Inhalation): CYP3A4 Inhibitors (Strong) may increase the serum concentration of Budesonide (Oral Inhalation). Monitor therapy

Budesonide (Systemic): CYP3A4 Inhibitors (Strong) may increase the serum concentration of Budesonide (Systemic). Management: Avoid the concomitant use of CYP3A4 inhibitors and oral budesonide. If patients receive both budesonide and a strong CYP3A4 inhibitor, they should be closely monitored for signs and symptoms of corticosteroid excess. Consider therapy modification

Budesonide (Topical): CYP3A4 Inhibitors (Strong) may increase the serum concentration of Budesonide (Topical). Avoid combination

Buprenorphine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Buprenorphine. Monitor therapy

BuPROPion: CYP2B6 Inducers (Weak) may decrease the serum concentration of BuPROPion. Monitor therapy

BusPIRone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of BusPIRone. Management: Limit the buspirone dose to 2.5 mg daily and monitor patients for increased buspirone effects/toxicities if combined with strong CYP3A4 inhibitors. Consider therapy modification

Cabazitaxel: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Cabazitaxel. Management: Concurrent use of cabazitaxel with strong inhibitors of CYP3A4 should be avoided when possible. If such a combination must be used, consider a 25% reduction in the cabazitaxel dose. Consider therapy modification

Cabozantinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Cabozantinib. Management: Avoid use of a strong CYP3A4 inhibitor with cabozantinib if possible. If combined, decrease cabozantinib capsules (Cometriq) by 40 mg from previous dose or decrease cabozantinib tablets (Cabometyx) by 20 mg from previous dose. Consider therapy modification

Calcifediol: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Calcifediol. Monitor therapy

Calcium Channel Blockers (Nondihydropyridine): Protease Inhibitors may decrease the metabolism of Calcium Channel Blockers (Nondihydropyridine). Increased serum concentrations of the calcium channel blocker may increase risk of AV nodal blockade. Management: Avoid concurrent use when possible. If used, monitor for CCB toxicity. The manufacturer of atazanavir recommends a 50% dose reduction for diltiazem be considered. Saquinavir, tipranavir, and darunavir/cobicistat use with bepridil is contraindicated. Consider therapy modification

Cannabidiol: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Cannabidiol. Monitor therapy

Cannabis: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Cannabis. More specifically, tetrahydrocannabinol and cannabidiol serum concentrations may be increased. Monitor therapy

Capmatinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Capmatinib. Monitor therapy

Cariprazine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Cariprazine. Management: Decrease cariprazine dose 50% (4.5 mg to 1.5 mg or 3 mg; 1.5 mg to 1.5 mg every other day) if starting a strong CYP3A4 inhibitor. If on a strong CYP3A4 inhibitor, start cariprazine at 1.5 mg day 1, 0 mg day 2, then 1.5 mg daily. May increase to 3 mg daily Consider therapy modification

Ceritinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ceritinib. Management: If such combinations cannot be avoided, the ceritinib dose should be reduced by approximately one-third (to the nearest 150 mg). Resume the prior ceritinib dose after cessation of the strong CYP3A4 inhibitor. Exceptions discussed in separate monographs. Consider therapy modification

Ciclesonide (Oral Inhalation): CYP3A4 Inhibitors (Strong) may increase serum concentrations of the active metabolite(s) of Ciclesonide (Oral Inhalation). Monitor therapy

Cilostazol: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Cilostazol. Management: Consider reducing the cilostazol dose to 50 mg twice daily in adult patients who are also receiving strong inhibitors of CYP3A4. Consider therapy modification

Cinacalcet: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Cinacalcet. Monitor therapy

Cisapride: Protease Inhibitors may increase the serum concentration of Cisapride. This may result in QTc prolongation and malignant cardiac arrhythmias. Management: Drugs listed as exceptions to this monograph are discussed in further detail in separate drug interaction monographs. Avoid combination

CloZAPine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of CloZAPine. Management: Drugs listed as exceptions to this monograph are discussed in further detail in separate drug interaction monographs. Monitor therapy

CloZAPine: CYP1A2 Inducers (Weak) may decrease the serum concentration of CloZAPine. Monitor therapy

Cobimetinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Cobimetinib. Avoid combination

Codeine: CYP3A4 Inhibitors (Strong) may increase serum concentrations of the active metabolite(s) of Codeine. Monitor therapy

Colchicine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Colchicine. Management: Colchicine is contraindicated in patients with impaired renal or hepatic function who are also receiving a strong CYP3A4 inhibitor. In those with normal renal and hepatic function, reduce colchicine dose as directed. See interaction monograph for details. Consider therapy modification

Conivaptan: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Conivaptan. Avoid combination

Copanlisib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Copanlisib. Management: If concomitant use of copanlisib and strong CYP3A4 inhibitors cannot be avoided, reduce the copanlisib dose to 45 mg. Monitor patients for increased copanlisib effects/toxicities. Consider therapy modification

Corticosteroids (Systemic): CYP3A4 Inhibitors (Strong) may increase the serum concentration of Corticosteroids (Systemic). Exceptions: MethylPREDNISolone; PrednisoLONE (Systemic); PredniSONE. Monitor therapy

Crizotinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Crizotinib. Management: Avoid concomitant use of crizotinib and strong CYP3A4 inhibitors whenever possible. If combined use cannot be avoided, decrease the crizotinib dose to 250 mg daily. Exceptions are discussed in separate monographs. Consider therapy modification

Cyclophosphamide: Protease Inhibitors may enhance the adverse/toxic effect of Cyclophosphamide. Specifically, the incidences of neutropenia, infection, and mucositis may be increased. Monitor therapy

CycloSPORINE (Systemic): CYP3A4 Inhibitors (Strong) may increase the serum concentration of CycloSPORINE (Systemic). Management: Monitor cyclosporine serum concentrations and clinical cyclosporine closely with concurrent use of any strong CYP3A4 inhibitor. Cyclosporine dose reductions and/or prolongation of the dosing interval will likely be required. Consider therapy modification

CYP2C19 Inducers (Moderate): May decrease the serum concentration of Nelfinavir. Monitor therapy

CYP2C19 Inhibitors (Strong): May increase the serum concentration of Nelfinavir. Monitor therapy

CYP3A4 Inducers (Moderate): May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

CYP3A4 Inducers (Strong): May increase the metabolism of CYP3A4 Substrates (High risk with Inducers). Management: Consider an alternative for one of the interacting drugs. Some combinations may be specifically contraindicated. Consult appropriate manufacturer labeling. Consider therapy modification

CYP3A4 Substrates (High risk with Inhibitors): CYP3A4 Inhibitors (Strong) may decrease the metabolism of CYP3A4 Substrates (High risk with Inhibitors). Management: Consider avoiding this combination. Some combinations are specifically contraindicated by manufacturers; others may have recommended dose adjustments. If combined, monitor for increased substrate effects. Exceptions: Alitretinoin (Systemic); AmLODIPine; Benzhydrocodone; Bromperidol; Buprenorphine; Gefitinib; HYDROcodone; Mirtazapine; Oliceridine; Praziquantel; Ripretinib; Telithromycin; VinBLAStine; Vinorelbine. Consider therapy modification

Dabrafenib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Dabrafenib. Avoid combination

Daclatasvir: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Daclatasvir. Management: Decrease the daclatasvir dose to 30 mg once daily if combined with a strong CYP3A4 inhibitor. No dose adjustment is needed when daclatasvir is used with darunavir/cobicistat. Consider therapy modification

Dapoxetine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Dapoxetine. Avoid combination

Darifenacin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Darifenacin. Management: Limit the darifenacin dose to no more than 7.5 mg daily if combined with strong CYP3A4 inhibitors. Monitor patients for increased darifenacin toxicities (eg, dry mouth, constipation, headache, CNS effects) when these agents are combined. Consider therapy modification

Dasatinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Dasatinib. Management: This combination should be avoided if possible. If combined, decrease dasatinib dose from 140 mg to 40 mg, 100 mg to 20 mg, or 70 mg to 20 mg. For patients taking 60 mg or 40 mg daily, stop dasatinib until the CYP3A4 inhibitor is discontinued. Consider therapy modification

Deferasirox: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Deflazacort: CYP3A4 Inhibitors (Strong) may increase serum concentrations of the active metabolite(s) of Deflazacort. Management: Administer one third of the recommended deflazacort dose when used together with a strong or moderate CYP3A4 inhibitor. Consider therapy modification

Delamanid: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Delamanid. Management: Increase ECG monitoring frequency if delamanid is combined with strong CYP3A4 inhibitors due to the risk for QTc interval prolongation. Continue frequent ECG assessments throughout full delamanid treatment period. Exceptions discussed separately. Consider therapy modification

Delavirdine: Nelfinavir may decrease the serum concentration of Delavirdine. Delavirdine may increase the serum concentration of Nelfinavir. Management: Consider alternatives to this combination. Safe and effective doses for coadministration have not been determined according to the nelfinavir prescribing information. Consider therapy modification

DexAMETHasone (Ophthalmic): CYP3A4 Inhibitors (Strong) may increase the serum concentration of DexAMETHasone (Ophthalmic). Monitor therapy

DOCEtaxel: CYP3A4 Inhibitors (Strong) may increase the serum concentration of DOCEtaxel. Management: Avoid the concomitant use of docetaxel and strong CYP3A4 inhibitors when possible. If combined use is unavoidable, consider a 50% docetaxel dose reduction and monitor for increased docetaxel toxicities. Consider therapy modification

Dofetilide: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Dofetilide. Monitor therapy

Domperidone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Domperidone. Management: Drugs listed as exceptions to this monograph are discussed in further detail in separate drug interaction monographs. Avoid combination

Doxercalciferol: CYP3A4 Inhibitors (Strong) may decrease serum concentrations of the active metabolite(s) of Doxercalciferol. Monitor therapy

DOXOrubicin (Conventional): CYP3A4 Inhibitors (Strong) may increase the serum concentration of DOXOrubicin (Conventional). Management: Seek alternatives to strong CYP3A4 inhibitors in patients treated with doxorubicin whenever possible. One U.S. manufacturer (Pfizer Inc.) recommends that these combinations be avoided. Consider therapy modification

Dronabinol: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Dronabinol. Monitor therapy

Dronedarone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Dronedarone. Management: Drugs listed as exceptions to this monograph are discussed in further detail in separate drug interaction monographs. Avoid combination

Drospirenone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Drospirenone. Management: Drospirenone use is contraindicated specifically when the strong CYP3A4 inhibitors atazanavir and cobicistat are administered concurrently. Caution should be used when drospirenone is coadministered with other strong CYP3A4 inhibitors. Consider therapy modification

Dutasteride: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Dutasteride. Monitor therapy

Duvelisib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Duvelisib. Management: Reduce the dose of duvelisib to 15 mg twice a day when used together with a strong CYP3A4 inhibitor. Consider therapy modification

Elagolix: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Elagolix. Management: Use of the elagolix 200 mg twice daily dose with a strong CYP3A4 inhibitor for longer than 1 month is not recommended. Limit combined use of the elagolix 150 mg once daily dose with a strong CYP3A4 inhibitor to a maximum of 6 months. Consider therapy modification

Elagolix, Estradiol, and Norethindrone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Elagolix, Estradiol, and Norethindrone. Avoid combination

Eletriptan: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Eletriptan. Avoid combination

Elexacaftor, Tezacaftor, and Ivacaftor: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Elexacaftor, Tezacaftor, and Ivacaftor. Management: When combined with strong CYP3A4 inhibitors, administer two elexacaftor/tezacaftor/ivacaftor tablets (100 mg/50 mg/75 mg) in the morning, twice a week, approximately 3 to 4 days apart. No evening doses of ivacaftor (150 mg) alone should be administered. Consider therapy modification

Eliglustat: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Eliglustat. Management: Reduce eliglustat dose to 84 mg daily in CYP2D6 EMs when used with strong CYP3A4 inhibitors. Use of strong CYP3A4 inhibitors is contraindicated in CYP2D6 IMs, PMs, or in CYP2D6 EMs who are also taking strong or moderate CYP2D6 inhibitors. Consider therapy modification

Encorafenib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Encorafenib. Management: Avoid use of encorafenib and strong CYP3A4 inhibitors when possible. If combined, decrease encorafenib from 450 mg to 150 mg; or from 300 mg, 225 mg, or 150 mg to 75 mg. Once the CYP3A4 inhibitor is discontinued for 3 to 5 half-lives, resume prior dose. Consider therapy modification

Enfortumab Vedotin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Enfortumab Vedotin. Specifically, concentrations of the active monomethyl auristatin E (MMAE) component may be increased. Monitor therapy

Enfuvirtide: Protease Inhibitors may increase the serum concentration of Enfuvirtide. Enfuvirtide may increase the serum concentration of Protease Inhibitors. Monitor therapy

Entrectinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Entrectinib. Management: Avoid strong CYP3A4 inhibitors during treatment with entrectinib when possible. If combined in adults and those 12 yrs of age or older with a BSA of at least 1.5 square meters, reduce dose to 100 mg/day. Avoid if BSA is less than 1.5 square meters. Consider therapy modification

Enzalutamide: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Management: Concurrent use of enzalutamide with CYP3A4 substrates that have a narrow therapeutic index should be avoided. Use of enzalutamide and any other CYP3A4 substrate should be performed with caution and close monitoring. Consider therapy modification

Eplerenone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Eplerenone. Avoid combination

Erdafitinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Erdafitinib. Management: Avoid concomitant use of erdafitinib and strong CYP3A4 inhibitors when possible. If combined, monitor closely for erdafitinib adverse reactions and consider dose modifications accordingly. Consider therapy modification

Ergot Derivatives: Protease Inhibitors may increase the serum concentration of Ergot Derivatives. Exceptions: Cabergoline; Lisuride; Nicergoline; Pergolide. Avoid combination

Erlotinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Erlotinib. Management: Avoid use of this combination when possible. When the combination must be used, monitor the patient closely for the development of severe adverse reactions, and if such severe reactions occur, reduce the erlotinib dose (in 50 mg decrements). Consider therapy modification

Estriol (Systemic): Nelfinavir may decrease the serum concentration of Estriol (Systemic). Monitor therapy

Estriol (Topical): Nelfinavir may decrease the serum concentration of Estriol (Topical). Monitor therapy

Estrogen Derivatives: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Estrogen Derivatives. Monitor therapy

Estrogen Derivatives (Contraceptive): Protease Inhibitors may decrease the serum concentration of Estrogen Derivatives (Contraceptive). Management: Use oral contraceptives containing at least 35mcg ethinyl estradiol with atazanavir/ritonavir, or no more than 30mcg in patients receiving atazanavir alone. Use of an alternative, non-hormonal contraceptive is recommended with other protease inhibitors. Consider therapy modification

Eszopiclone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Eszopiclone. Management: Limit the eszopiclone dose to 2 mg daily when combined with strong CYP3A4 inhibitors and monitor for increased eszopiclone effects and toxicities (eg, somnolence, drowsiness, CNS depression). Consider therapy modification

Etizolam: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Etizolam. Management: Consider use of lower etizolam doses when using this combination; specific recommendations concerning dose adjustment are not available. Monitor clinical response to the combination closely. Consider therapy modification

Etravirine: Protease Inhibitors may decrease the serum concentration of Etravirine. This effect is anticipated with darunavir, saquinavir, and lopinavir (with low-dose ritonavir). Etravirine may increase the serum concentration of Protease Inhibitors. This effect is anticipated with nelfinavir. Management: Low-dose ritonavir boosting must be used when any protease inhibitor is used with etravirine. Avoid use of etravirine in combination with atazanavir, fosamprenavir, full-dose ritonavir (600 mg twice daily, in adults), or tipranavir. Monitor therapy

Everolimus: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Everolimus. Management: Consider avoiding use of strong CYP3A4 inhibitors with everolimus. If combined, closely monitor for increased everolimus serum concentrations and toxicities. Everolimus dose reductions will likely be required. Consider therapy modification

Evogliptin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Evogliptin. Monitor therapy

Fedratinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Fedratinib. Management: Consider alternatives when possible. If used together, decrease fedratinib dose to 200 mg/day. After the inhibitor is stopped, increase fedratinib to 300 mg/day for the first 2 weeks and then to 400 mg/day as tolerated. Consider therapy modification

FentaNYL: CYP3A4 Inhibitors (Strong) may increase the serum concentration of FentaNYL. Management: Consider fentanyl dose reductions when combined with a strong CYP3A4 inhibitor. Monitor for respiratory depression and sedation. Upon discontinuation of a CYP3A4 inhibitor, consider a fentanyl dose increase; monitor for signs and symptoms of withdrawal. Consider therapy modification

Fesoterodine: CYP3A4 Inhibitors (Strong) may increase serum concentrations of the active metabolite(s) of Fesoterodine. Management: Limit fesoterodine doses to 4 mg daily in patients who are also receiving strong CYP3A4 inhibitors. Consider therapy modification

Flibanserin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Flibanserin. Management: Use of flibanserin with strong CYP3A4 inhibitors is contraindicated. If starting flibanserin, start 2 weeks after the last dose of the CYP3A4 inhibitor. If starting a CYP3A4 inhibitor, start 2 days after the last dose of flibanserin. Avoid combination

Fluticasone (Nasal): CYP3A4 Inhibitors (Strong) may increase the serum concentration of Fluticasone (Nasal). Avoid combination

Fluticasone (Oral Inhalation): CYP3A4 Inhibitors (Strong) may increase the serum concentration of Fluticasone (Oral Inhalation). Consider therapy modification

Fosaprepitant: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Fosaprepitant. Avoid combination

Fosphenytoin: May decrease the serum concentration of Nelfinavir. Nelfinavir may decrease the serum concentration of Fosphenytoin. Monitor therapy

Fostamatinib: CYP3A4 Inhibitors (Strong) may increase serum concentrations of the active metabolite(s) of Fostamatinib. Monitor therapy

Galantamine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Galantamine. Monitor therapy

Garlic: May decrease the serum concentration of Protease Inhibitors. Management: Concurrent use of garlic supplements with protease inhibitors is not recommended. If this combination is used, monitor closely for altered serum concentrations/effects of protease inhibitors, and particularly for signs/symptoms of therapeutic failure. Consider therapy modification

Gefitinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Gefitinib. Monitor therapy

Gilteritinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Gilteritinib. Management: Consider alternatives to the use of a strong CYP3A4 inhibitor with gilteritinib. If the combination cannot be avoided, monitor more closely for evidence of gilteritinib toxicities. Consider therapy modification

Glasdegib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Glasdegib. Management: Consider alternatives to this combination when possible. If the combination must be used, monitor closely for evidence of QT interval prolongation and other adverse reactions to glasdegib. Consider therapy modification

GuanFACINE: CYP3A4 Inhibitors (Strong) may increase the serum concentration of GuanFACINE. Management: Reduce the extended-release guanfacine dose 50% when combined with a strong CYP3A4 inhibitor. Monitor for increased guanfacine toxicities when these agents are combined. Consider therapy modification

Halofantrine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Halofantrine. Management: Drugs listed as exceptions to this monograph are discussed in further detail in separate drug interaction monographs. Avoid combination

Histamine H2 Receptor Antagonists: May decrease serum concentrations of the active metabolite(s) of Nelfinavir. Histamine H2 Receptor Antagonists may decrease the serum concentration of Nelfinavir. Concentrations of the active M8 metabolite may also be reduced. Monitor therapy

HYDROcodone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of HYDROcodone. Monitor therapy

Ibrutinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ibrutinib. Management: Avoid concomitant use of ibrutinib and strong CYP3A4 inhibitors. If a strong CYP3A4 inhibitor must be used short-term (eg, anti-infectives for 7 days or less), interrupt ibrutinib therapy until the strong CYP3A4 inhibitor is discontinued. Avoid combination

Idelalisib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Idelalisib. Monitor therapy

Ifosfamide: CYP3A4 Inhibitors (Strong) may decrease serum concentrations of the active metabolite(s) of Ifosfamide. Monitor therapy

Iloperidone: CYP3A4 Inhibitors (Strong) may increase serum concentrations of the active metabolite(s) of Iloperidone. Specifically, concentrations of the metabolites P88 and P95 may be increased. CYP3A4 Inhibitors (Strong) may increase the serum concentration of Iloperidone. Management: Reduce iloperidone dose by half when administered with a strong CYP3A4 inhibitor. Consider therapy modification

Imatinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Imatinib. Monitor therapy

Imidafenacin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Imidafenacin. Monitor therapy

Irinotecan Products: CYP3A4 Inhibitors (Strong) may increase serum concentrations of the active metabolite(s) of Irinotecan Products. Specifically, serum concentrations of SN-38 may be increased. CYP3A4 Inhibitors (Strong) may increase the serum concentration of Irinotecan Products. Avoid combination

Isavuconazonium Sulfate: CYP3A4 Inhibitors (Strong) may increase serum concentrations of the active metabolite(s) of Isavuconazonium Sulfate. Specifically, CYP3A4 Inhibitors (Strong) may increase isavuconazole serum concentrations. Management: Combined use is considered contraindicated per US labeling. Lopinavir/ritonavir (and possibly other uses of ritonavir doses less than 400 mg every 12 hours) is treated as a possible exception to this contraindication despite strongly inhibiting CYP3A4. Avoid combination

Istradefylline: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Istradefylline. Management: Limit the maximum istradefylline dose to 20 mg daily when combined with strong CYP3A4 inhibitors and monitor for increased istradefylline effects/toxicities. Consider therapy modification

Ivabradine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ivabradine. Avoid combination

Ivacaftor: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ivacaftor. Management: Ivacaftor dose reductions are required; consult full drug interaction monograph content for age- and weight-specific recommendations. Consider therapy modification

Ivosidenib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ivosidenib. Management: Avoid use of a strong CYP3A4 inhibitor with ivosidenib whenever possible. When combined use is required, reduce the ivosidenib dose to 250 mg once daily. Drugs listed as exceptions are discussed in further detail in separate drug interaction monographs. Consider therapy modification

Ixabepilone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ixabepilone. Management: Avoid use of ixabepilone and strong CYP3A4 inhibitors when possible. If combined, reduce the ixabepilone dose to 20 mg/m2. The previous ixabepilone dose can be resumed 1 week after discontinuation of the strong CYP3A4 inhibitor. Consider therapy modification

Lapatinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Lapatinib. Management: Avoid use of lapatinib and strong CYP3A4 inhibitors when possible. If combined, reduce lapatinib dose to 500 mg daily. The previous lapatinib dose can be resumed 1 week after discontinuation of the strong CYP3A4 inhibitor. Consider therapy modification

Larotrectinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Larotrectinib. Management: Avoid use of strong CYP3A4 inhibitors with larotrectinib. If this combination cannot be avoided, reduce the larotrectinib dose by 50%. Increase to previous dose after stopping the inhibitor after a period of 3 to 5 times the inhibitor's half-life. Consider therapy modification

Lefamulin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Lefamulin. Management: Avoid concomitant use of lefamulin tablets and strong inhibitors of CYP3A4. Avoid combination

Lemborexant: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Lemborexant. Avoid combination

Lercanidipine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Lercanidipine. Avoid combination

Levamlodipine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Levamlodipine. Monitor therapy

Levobupivacaine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Levobupivacaine. Monitor therapy

Levomethadone: Nelfinavir may decrease the serum concentration of Levomethadone. Monitor therapy

Levomilnacipran: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Levomilnacipran. Management: Do not exceed a maximum adult levomilnacipran dose of 80 mg/day in patients also receiving strong CYP3A4 inhibitors. Consider therapy modification

Lomitapide: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Lomitapide. Avoid combination

Lopinavir: Nelfinavir may decrease the serum concentration of Lopinavir. Lopinavir may increase the serum concentration of Nelfinavir. Concentrations of the nelfinavir M8 metabolite may also be increased. Management: Avoid once daily use of lopinavir/ritonavir with nelfinavir. Avoid use of this combination in patients less than 6 months of age. See lopinavir/ritonavir prescribing information for recommended dose increases in other patients. Consider therapy modification

Lorlatinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Lorlatinib. Management: Avoid use of lorlatinib with strong CYP3A4 inhibitors. If the combination cannot be avoided, reduce the lorlatinib dose from 100 mg once daily to 75 mg once daily, or from 75 mg once daily to 50 mg once daily. Consider therapy modification

Lovastatin: Protease Inhibitors may increase the serum concentration of Lovastatin. Avoid combination

Lovastatin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Lovastatin. Avoid combination

Lumacaftor and Ivacaftor: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Lumacaftor and Ivacaftor. Management: When initiating or resuming lumacaftor/ivacaftor after a therapy interruption of 7 days or more, reduce the lumacaftor/ivacaftor dose to 1 tablet daily or 1 packet of oral granules every other day for the first week, and then resume the standard dose. Consider therapy modification

Lumateperone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Lumateperone. Avoid combination

Lumefantrine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Lumefantrine. Monitor therapy

Lurasidone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Lurasidone. Avoid combination

Lurbinectedin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Lurbinectedin. Avoid combination

Macitentan: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Macitentan. Avoid combination

Manidipine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Manidipine. Management: Consider avoiding concomitant use of manidipine and strong CYP3A4 inhibitors. If combined, monitor closely for increased manidipine effects and toxicities. Manidipine dose reductions may be required. Consider therapy modification

Maraviroc: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Maraviroc. Management: Reduce maraviroc to 150mg twice/day in adult and pediatric patients weighing 40kg or more. See full interaction monograph or maraviroc labeling for dose adjustments in pediatric patients less than 40kg. Do not use in patients with CrCl less than 30mL/min. Consider therapy modification

Meperidine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Meperidine. Monitor therapy

Methadone: Nelfinavir may decrease the serum concentration of Methadone. Monitor therapy

MethylPREDNISolone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of MethylPREDNISolone. Management: Consider methylprednisolone dose reduction in patients receiving strong CYP3A4 inhibitors and monitor for increased steroid related adverse effects. Consider therapy modification

Midazolam: Protease Inhibitors may increase the serum concentration of Midazolam. Management: Oral midazolam contraindicated with all protease inhibitors. IV midazolam contraindicated with fosamprenavir and nelfinavir; other protease inhibitors recommend caution, close monitoring, and consideration of lower IV midazolam doses with concurrent use. Avoid combination

Midostaurin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Midostaurin. Management: Seek alternatives to the concomitant use of midostaurin and strong CYP3A4 inhibitors if possible. If concomitant use cannot be avoided, monitor patients for increased risk of adverse reactions. Exceptions are discussed in separate monographs. Consider therapy modification

MiFEPRIStone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of MiFEPRIStone. Management: For treatment of hyperglycemia in Cushing's syndrome, start mifepristone at 300 mg/day, may titrate to a maximum of 900 mg/day. If starting a strong CYP3A4 inhibitor and taking >300 mg/day mifepristone, decrease the mifepristone dose by 300 mg/day. Consider therapy modification

Mirodenafil: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Mirodenafil. Management: Consider using a lower dose of mirodenafil when used with strong CYP3A4 inhibitors. Monitor for increased mirodenafil effects/toxicities with the use of this combination. Consider therapy modification

Mirtazapine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Mirtazapine. Monitor therapy

Mitotane: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Management: Doses of CYP3A4 substrates may need to be adjusted substantially when used in patients being treated with mitotane. Consider therapy modification

Mometasone (Oral Inhalation): CYP3A4 Inhibitors (Strong) may increase the serum concentration of Mometasone (Oral Inhalation). Monitor therapy

Naldemedine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Naldemedine. Monitor therapy

Nalfurafine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Nalfurafine. Monitor therapy

Naloxegol: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Naloxegol. Avoid combination

Nefazodone: Protease Inhibitors may increase the serum concentration of Nefazodone. Management: Consider alternatives to, or reduced doses of, nefazodone in patients treated with HIV protease inhibitors. Monitor patients receiving these combinations closely for toxic effects of nefazodone. Consider therapy modification

Neratinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Neratinib. Avoid combination

Nevirapine: May decrease serum concentrations of the active metabolite(s) of Nelfinavir. Nevirapine may decrease the serum concentration of Nelfinavir. Monitor therapy

Nilotinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Nilotinib. Management: Avoid if possible. If combination needed, decrease nilotinib to 300 mg once/day for patients with resistant or intolerant Ph+ CML or to 200 mg once/day for patients with newly diagnosed Ph+ CML in chronic phase. Exceptions discussed in separate monograph. Consider therapy modification

NiMODipine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of NiMODipine. Avoid combination

Nisoldipine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Nisoldipine. Avoid combination

OLANZapine: CYP1A2 Inducers (Weak) may decrease the serum concentration of OLANZapine. Monitor therapy

Olaparib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Olaparib. Management: Avoid use of strong CYP3A4 inhibitors with olaparib, if possible. If such concurrent use cannot be avoided, the dose of olaparib tablets should be reduced to 100 mg twice daily and the dose of olaparib capsules should be reduced to 150 mg twice daily. Consider therapy modification

Oliceridine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Oliceridine. Monitor therapy

Orlistat: May decrease the serum concentration of Antiretroviral Agents. Monitor therapy

Osilodrostat: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Osilodrostat. Management: Reduce osilodrostat dose by 50% during coadministration with a strong CYP3A4 inhibitor. Consider therapy modification

Ospemifene: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ospemifene. Monitor therapy

Oxybutynin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Oxybutynin. Monitor therapy

Palbociclib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Palbociclib. Management: Avoid concurrent use of strong CYP3A4 inhibitors with palbociclib when possible. If the use of a strong CYP3A4 inhibitor cannot be avoided, decrease the palbociclib dose to 75 mg/day. Consider therapy modification

Panobinostat: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Panobinostat. Management: Reduce the panobinostat dose to 10 mg when it must be used with a strong CYP3A4 inhibitor. Consider therapy modification

Parecoxib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Parecoxib. Specifically, serum concentrations of the active moiety valdecoxib may be increased. Monitor therapy

Paricalcitol: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Paricalcitol. Monitor therapy

PAZOPanib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of PAZOPanib. Management: Avoid concurrent use of pazopanib with strong inhibitors of CYP3A4 whenever possible. If it is not possible to avoid such a combination, reduce pazopanib dose to 400 mg. Further dose reductions may also be required if adverse reactions occur. Consider therapy modification

Pemigatinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Pemigatinib. Management: If combined use cannot be avoided, reduce the pemigatinib dose from 13.5 mg daily to 9 mg daily, or from 9 mg daily to 4.5 mg daily. Resume prior pemigatinib dose after stopping the strong inhibitor once 3 half-lives of the inhibitor has passed. Consider therapy modification

Pexidartinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Pexidartinib. Management: Avoid use of pexidartinib with strong CYP3A4 inhibitors if possible. If combined use cannot be avoided, pexidartinib dose should be reduced. Decrease 800 mg or 600 mg daily doses to 200 mg twice daily. Decrease doses of 400 mg per day to 200 mg once daily Consider therapy modification

Phenytoin: Nelfinavir may decrease the serum concentration of Phenytoin. Phenytoin may decrease the serum concentration of Nelfinavir. Monitor therapy

Pimavanserin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Pimavanserin. Management: Decrease the pimavanserin dose to 10 mg daily when combined with strong CYP3A4 inhibitors. Consider therapy modification

Pimecrolimus: CYP3A4 Inhibitors (Strong) may decrease the metabolism of Pimecrolimus. Monitor therapy

Pimozide: Protease Inhibitors may increase the serum concentration of Pimozide. Avoid combination

Pimozide: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Pimozide. Avoid combination

Piperaquine: CYP3A4 Inhibitors (Strong) may enhance the QTc-prolonging effect of Piperaquine. CYP3A4 Inhibitors (Strong) may increase the serum concentration of Piperaquine. Management: Avoid concomitant use of piperaquine and strong CYP3A4 inhibitors when possible. If the combination cannot be avoided, frequent ECG monitoring is recommended due to the risk for QTc prolongation. Exceptions are discussed separately. Consider therapy modification

Polatuzumab Vedotin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Polatuzumab Vedotin. Exposure to unconjugated MMAE, the cytotoxic small molecule component of polatuzumab vedotin, may be increased. Monitor therapy

PONATinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of PONATinib. Management: Per ponatinib U.S. prescribing information, the adult starting dose of ponatinib should be reduced to 30 mg daily during treatment with any strong CYP3A4 inhibitor. Consider therapy modification

Pralsetinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Pralsetinib. Avoid combination

Pranlukast: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Pranlukast. Monitor therapy

Pravastatin: Nelfinavir may decrease the serum concentration of Pravastatin. Monitor therapy

Praziquantel: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Praziquantel. Monitor therapy

PrednisoLONE (Systemic): CYP3A4 Inhibitors (Strong) may increase the serum concentration of PrednisoLONE (Systemic). Monitor therapy

PredniSONE: CYP3A4 Inhibitors (Strong) may increase the serum concentration of PredniSONE. Monitor therapy

Progestins (Contraceptive): Nelfinavir may decrease the serum concentration of Progestins (Contraceptive). Management: Use an alternative or additional method of contraception due to possibly decreased contraceptive effectiveness. Injected depot medroxyprogesterone acetate does not appear to participate in this interaction. Exceptions: Levonorgestrel (IUD). Consider therapy modification

Propafenone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Propafenone. Management: Drugs listed as exceptions to this monograph are discussed in further detail in separate drug interaction monographs. Monitor therapy

Protease Inhibitors: May increase the serum concentration of other Protease Inhibitors. Management: Atazanavir--indinavir combination contraindicated. Tipranavir/ritonavir or atazanavir/ritonavir not recommended with other protease inhibitors (PI). Darunavir/cobicistat not recommended with PI that require boosting.Other combos may require dose changes. Consider therapy modification

Proton Pump Inhibitors: May decrease serum concentrations of the active metabolite(s) of Nelfinavir. Proton Pump Inhibitors may decrease the serum concentration of Nelfinavir. Management: Due to potentially significant reductions in nelfinavir exposure, avoid concurrent use of nelfinavir with a PPI when possible. If unavoidable, consider PPI use for a short duration (less than 30 days) and closely monitor viral load during coadministration Consider therapy modification

QUEtiapine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of QUEtiapine. Management: In quetiapine treated patients, reduce quetiapine to one-sixth of regular dose after starting strong CYP3A4 inhibitor. In those on strong CYP3A4 inhibitors, start quetiapine at lowest dose and up-titrate as needed. Exceptions discussed separately. Consider therapy modification

QuiNIDine: Nelfinavir may increase the serum concentration of QuiNIDine. Avoid combination

Radotinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Radotinib. Avoid combination

Ramelteon: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ramelteon. Monitor therapy

Ranolazine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ranolazine. Avoid combination

Red Yeast Rice: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Red Yeast Rice. Specifically, concentrations of lovastatin and related compounds found in Red Yeast Rice may be increased. Avoid combination

Regorafenib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Regorafenib. Avoid combination

Repaglinide: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Repaglinide. Management: The addition of a CYP2C8 inhibitor to this drug combination may substantially increase the magnitude of increase in repaglinide exposure. Monitor therapy

Retapamulin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Retapamulin. Management: Avoid this combination in patients less than 2 years old. No action is required in other populations. Monitor therapy

Ribociclib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ribociclib. Management: Avoid use of ribociclib with strong CYP3A4 inhibitors when possible; if combined use cannot be avoided, reduce ribociclib dose to 400 mg once daily. Exceptions are discussed in separate monographs. Consider therapy modification

Rifabutin: Nelfinavir may increase serum concentrations of the active metabolite(s) of Rifabutin. Rifabutin may decrease the serum concentration of Nelfinavir. Nelfinavir may increase the serum concentration of Rifabutin. Management: Decrease the usual rifabutin dose by at least 50% when used with nelfinavir. Additionally, the preferred dose of nelfinavir when used in combination with rifabutin is 1250 mg twice daily. Rifabutin doses may also need to be adjusted. Consider therapy modification

RifAMPin: May decrease the serum concentration of Nelfinavir. Avoid combination

Rilpivirine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Rilpivirine. Monitor therapy

Rimegepant: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Rimegepant. Avoid combination

Riociguat: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Riociguat. Monitor therapy

Ripretinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ripretinib. Monitor therapy

RomiDEPsin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of RomiDEPsin. Monitor therapy

Rosuvastatin: Protease Inhibitors may increase the serum concentration of Rosuvastatin. Management: Limit rosuvastatin to 5 mg daily in patients receiving atazanavir/ritonavir or lopinavir/ritonavir. Patients receiving fosamprenavir/ritonavir or tipranavir/ritonavir do require dose adjustments if rosuvastatin is used concomitantly. Consider therapy modification

Rupatadine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Rupatadine. Avoid combination

Ruxolitinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ruxolitinib. Management: This combination should be avoided under some circumstances. See monograph for details. Consider therapy modification

Salmeterol: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Salmeterol. Avoid combination

Sarilumab: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

SAXagliptin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of SAXagliptin. Management: Limit the saxagliptin dose to 2.5 mg daily when combined with strong CYP3A4 inhibitors. When using the saxagliptin combination products saxagliptin/dapagliflozin or saxagliptin/dapagliflozin/metformin, avoid use with strong CYP3A4 inhibitors. Consider therapy modification

Selpercatinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Selpercatinib. Management: Avoid combination if possible. If use is necessary, reduce selpercatinib dose as follows: from 120 mg twice/day to 40 mg twice/day, or from 160 mg twice/day to 80 mg twice/day. Consider therapy modification

Selumetinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Selumetinib. Management: Avoid concomitant use when possible. If combined, selumetinib dose reductions are recommended and vary based on body surface area and selumetinib dose. For details, see the full drug interaction monograph or selumetinib prescribing information. Consider therapy modification

Sibutramine: CYP3A4 Inhibitors (Strong) may increase serum concentrations of the active metabolite(s) of Sibutramine. CYP3A4 Inhibitors (Strong) may increase the serum concentration of Sibutramine. Monitor therapy

Sildenafil: Protease Inhibitors may increase the serum concentration of Sildenafil. Management: Erectile dysfunction: sildenafil max = 25 mg/48 hrs with ritonavir, atazanavir, or darunavir; starting dose = 25 mg with other protease inhibitors (adult doses). Contraindicated if sildenafil being used for pulmonary arterial hypertension. Consider therapy modification

Sildenafil: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Sildenafil. Management: Use of sildenafil for pulmonary hypertension should be avoided with strong CYP3A4 inhibitors. When used for erectile dysfunction, starting adult dose should be reduced to 25 mg. Maximum adult dose with ritonavir or cobicistat is 25 mg per 48 hours. Consider therapy modification

Silodosin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Silodosin. Avoid combination

Siltuximab: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Simeprevir: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Simeprevir. Avoid combination

Simeprevir: Protease Inhibitors may increase the serum concentration of Simeprevir. Simeprevir may increase the serum concentration of Protease Inhibitors. Avoid combination

Simvastatin: Protease Inhibitors may increase the serum concentration of Simvastatin. Avoid combination

Simvastatin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Simvastatin. Avoid combination

Sirolimus: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Sirolimus. Management: Avoid concurrent use of sirolimus with strong CYP3A4 inhibitors when possible and alternative agents with lesser interaction potential with sirolimus should be considered. Concomitant use of sirolimus and voriconazole or posaconazole is contraindicated. Consider therapy modification

Solifenacin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Solifenacin. Management: Limit adult solifenacin doses to 5 mg daily and limit doses in pediatric patients to the recommended weight-based starting dose (and do not increase the dose) when combined with strong CYP3A4 inhibitors. Consider therapy modification

Sonidegib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Sonidegib. Avoid combination

SORAfenib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of SORAfenib. Monitor therapy

St John's Wort: May increase the metabolism of Protease Inhibitors. Avoid combination

SUFentanil: CYP3A4 Inhibitors (Strong) may increase the serum concentration of SUFentanil. Management: If a strong CYP3A4 inhibitor is initiated in a patient on sufentanil, consider a sufentanil dose reduction and monitor for increased sufentanil effects and toxicities (eg, respiratory depression). Consider therapy modification

SUNItinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of SUNItinib. Management: Avoid when possible. If combined, decrease sunitinib dose to a minimum of 37.5 mg daily when treating GIST or RCC. Decrease sunitinib dose to a minimum of 25 mg daily when treating PNET. Monitor patients for both reduced efficacy and increased toxicities. Consider therapy modification

Suvorexant: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Suvorexant. Avoid combination

Tacrolimus (Systemic): Nelfinavir may increase the serum concentration of Tacrolimus (Systemic). Avoid combination

Tacrolimus (Topical): Protease Inhibitors may decrease the metabolism of Tacrolimus (Topical). Monitor therapy

Tadalafil: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Tadalafil. Management: Avoid this combination in patients taking tadalafil for pulmonary arterial hypertension. In patients taking tadalafil for ED or BPH, max tadalafil dose is 2.5 mg if taking daily or 10 mg no more frequently than every 72 hours if used as needed. Consider therapy modification

Tamsulosin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Tamsulosin. Avoid combination

Tasimelteon: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Tasimelteon. Monitor therapy

Tazemetostat: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Tazemetostat. Avoid combination

Telithromycin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Telithromycin. Monitor therapy

Temsirolimus: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Temsirolimus. Management: Avoid concomitant use of temsirolimus and strong CYP3A4 inhibitors. If coadministration is unavoidable, decrease temsirolimus dose to 12.5 mg per week. Resume previous temsirolimus dose 1 week after discontinuation of the strong CYP3A4 inhibitor. Consider therapy modification

Terfenadine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Terfenadine. Management: Drugs listed as exceptions to this monograph are discussed in further detail in separate drug interaction monographs. Avoid combination

Tetrahydrocannabinol: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Tetrahydrocannabinol. Monitor therapy

Tetrahydrocannabinol and Cannabidiol: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Tetrahydrocannabinol and Cannabidiol. Monitor therapy

Tezacaftor and Ivacaftor: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Tezacaftor and Ivacaftor. Management: If combined with strong CYP3A4 inhibitors, tezacaftor/ivacaftor should be administered in the morning, twice a week, approximately 3 to 4 days apart. Tezacaftor/ivacaftor dose depends on age and weight; see full Lexi-Interact monograph for details. Consider therapy modification

Thiotepa: CYP3A4 Inhibitors (Strong) may decrease serum concentrations of the active metabolite(s) of Thiotepa. CYP3A4 Inhibitors (Strong) may increase the serum concentration of Thiotepa. Management: Thiotepa prescribing information recommends avoiding concomitant use of thiotepa and strong CYP3A4 inhibitors. If concomitant use is unavoidable, monitor for adverse effects and decreased efficacy. Consider therapy modification

Ticagrelor: CYP3A4 Inhibitors (Strong) may decrease serum concentrations of the active metabolite(s) of Ticagrelor. CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ticagrelor. Avoid combination

Tipranavir: May decrease the serum concentration of Protease Inhibitors. Avoid combination

Tocilizumab: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Tofacitinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Tofacitinib. Management: Tofacitinib dose reductions are recommended when combined with strong CYP3A4 inhibitors. Recommended dose adjustments vary by tofacitinib formulation and therapeutic indication. See full Lexi Interact monograph for details. Consider therapy modification

Tolterodine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Tolterodine. Management: The maximum recommended adult dose of tolterodine is 2 mg/day when used together with a strong CYP3A4 inhibitor. Consider therapy modification

Tolvaptan: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Tolvaptan. Avoid combination

Toremifene: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Toremifene. Management: Use of toremifene with strong CYP3A4 inhibitors should be avoided if possible. If coadministration is necessary, monitor for increased toremifene toxicities, including QTc interval prolongation. Exceptions are discussed in separate monograph. Consider therapy modification

Trabectedin: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Trabectedin. Avoid combination

TraMADol: CYP3A4 Inhibitors (Strong) may increase the serum concentration of TraMADol. Monitor therapy

TraZODone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of TraZODone. Management: Consider the use of a lower trazodone dose and monitor for increased trazodone effects (eg, sedation, QTc prolongation) if combined with strong CYP3A4 inhibitors. Consider therapy modification

Triazolam: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Triazolam. Avoid combination

Ubrogepant: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ubrogepant. Avoid combination

Udenafil: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Udenafil. Avoid combination

Ulipristal: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Ulipristal. Management: This is specific for when ulipristal is being used for signs/symptoms of uterine fibroids (Canadian indication). When ulipristal is used as an emergency contraceptive, patients receiving this combo should be monitored for ulipristal toxicity. Avoid combination

Upadacitinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Upadacitinib. Monitor therapy

Valbenazine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Valbenazine. Management: Reduce the valbenazine dose to 40 mg daily when combined with strong CYP3A4 inhibitors. Consider therapy modification

Valproate Products: Protease Inhibitors may decrease the serum concentration of Valproate Products. Monitor therapy

Vardenafil: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Vardenafil. Management: Limit Levitra (vardenafil) dose to a single 2.5 mg dose within a 24-hour period if combined with strong CYP3A4 inhibitors. Avoid concomitant use of Staxyn (vardenafil) and strong CYP3A4 inhibitors. Combined use is contraindicated outside of the US. Consider therapy modification

Vemurafenib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Vemurafenib. Management: Avoid concurrent use of vemurafenib with strong CYP3A4 inhibitors when possible. If concomitant use is unavoidable, consider a vemurafenib dose reduction if clinically indicated. Consider therapy modification

Venetoclax: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Venetoclax. Management: Coadministration is contraindicated during venetoclax initiation and ramp-up in CLL/SLL patients. Reduced venetoclax doses are required during ramp-up for patients with AML, and all maintenance therapy. See full Lexi Interact monograph for details. Consider therapy modification

Vilanterol: May increase the serum concentration of CYP3A4 Inhibitors (Strong). Monitor therapy

Vilazodone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Vilazodone. Management: Limit the maximum vilazodone dose to 20 mg daily in patients receiving strong CYP3A4 inhibitors. The original vilazodone dose can be resumed following discontinuation of the strong CYP3A4 inhibitor. Consider therapy modification

VinBLAStine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of VinBLAStine. Monitor therapy

VinCRIStine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of VinCRIStine. Management: Seek alternatives to this combination when possible. If combined, monitor closely for vincristine toxicities (eg, neurotoxicity, gastrointestinal toxicity, myelosuppression). Consider therapy modification

VinCRIStine (Liposomal): CYP3A4 Inhibitors (Strong) may increase the serum concentration of VinCRIStine (Liposomal). Avoid combination

Vindesine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Vindesine. Monitor therapy

Vinflunine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Vinflunine. Avoid combination

Vinorelbine: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Vinorelbine. Monitor therapy

Vorapaxar: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Vorapaxar. Avoid combination

Voriconazole: May increase the serum concentration of Nelfinavir. Monitor therapy

Voxelotor: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Voxelotor. Management: Avoid concomitant use of voxelotor and strong CYP3A4 inhibitors. If concomitant use is unavoidable, reduce the voxelotor dose to 1,000 mg once daily. Consider therapy modification

Warfarin: Nelfinavir may decrease the serum concentration of Warfarin. Nelfinavir may increase the serum concentration of Warfarin. Monitor therapy

Zanubrutinib: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Zanubrutinib. Management: Decrease the zanubrutinib dose to 80 mg once daily during coadministration with a strong CYP3A4 inhibitor. Further dose adjustments may be required for zanubrutinib toxicities, refer to prescribing information for details. Consider therapy modification

Zidovudine: Protease Inhibitors may decrease the serum concentration of Zidovudine. Monitor therapy

Zolpidem: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Zolpidem. Monitor therapy

Zopiclone: CYP3A4 Inhibitors (Strong) may increase the serum concentration of Zopiclone. Management: If coadministered with strong CYP3A4 inhibitors, initiate zopiclone at 3.75 mg in adults, with a maximum dose of 5 mg. Monitor for zopiclone toxicity (eg, drowsiness, confusion, lethargy, ataxia, respiratory depression). Consider therapy modification

Adverse Reactions

>10%: Gastrointestinal: Diarrhea (adults: 14% to 20%; children: 39% to 47%)

1% to 10%:

Central nervous system: Anxiety (<2%), depression (<2%), dizziness (<2%), drowsiness (<2%), emotional lability (<2%), headache (<2%), insomnia (<2%), malaise (<2%), migraine (<2%), myasthenia (<2%), pain (<2%), paresthesia (<2%), seizure (<2%), sleep disorder (<2%), suicidal ideation (<2%)

Dermatologic: Skin rash (adults: 1% to 3%), dermatitis (<2%), diaphoresis (<2%), folliculitis (<2%), fungal dermatitis (<2%), maculopapular rash (<2%), pruritus (<2%), urticaria (<2%)

Endocrine & metabolic: Dehydration (<2%), hyperglycemia (<2%), hyperlipidemia (<2%), hyperuricemia (<2%), hypoglycemia (<2%), increased amylase (<2%), increased gamma-glutamyl transferase (<2%), increased lactate dehydrogenase (<2%), lipodystrophy (<2%), redistribution of body fat (<2%)

Gastrointestinal: Nausea (adults: 3% to 7%), flatulence (adults: 1% to 5%), abdominal pain (<2%), anorexia (<2%), dyspepsia (<2%), epigastric pain (<2%), gastrointestinal hemorrhage (<2%), oral mucosa ulcer (<2%), pancreatitis (<2%), vomiting (<2%)

Genitourinary: Sexual disorder (<2%), urine abnormality (<2%)

Hematologic & oncologic: Lymphocytopenia (adults: 1% to 6%), decreased neutrophils (adults: 1% to 5%), anemia (<2%), leukopenia (<2%), thrombocytopenia (<2%)

Hepatic: Abnormal hepatic function tests (<2%), hepatitis (<2%), increased serum alkaline phosphatase (<2%), increased serum transaminases (<2%)

Hypersensitivity: Hypersensitivity reaction (<2%; including bronchospasm, edema, and skin rash)

Neuromuscular & skeletal: Arthralgia (<2%), arthritis (<2%), back pain (<2%), hyperkinesia (<2%), increased creatine phosphokinase (<2%), lipoatrophy (<2%), lipotrophy (<2%), muscle cramps (<2%), myalgia (<2%), myopathy (<2%), weakness (<2%)

Ophthalmic: Acute iritis (<2%), eye disease (<2%)

Renal: Nephrolithiasis (<2%)

Respiratory: Dyspnea (<2%), pharyngitis (<2%), rhinitis (<2%), sinusitis (<2%)

Miscellaneous: Fever (<2%)

<1%, postmarketing, and/or case reports: Hyperbilirubinemia, immune reconstitution syndrome, jaundice, metabolic acidosis, prolonged QT interval on ECG, torsades de pointes

Warnings/Precautions

Concerns related to adverse effects:

• Diarrhea: Diarrhea occurs frequently with use, particularly in children; a secretory diarrhea mediated via a calcium-dependent process may also occur; calcium carbonate administered at the same time as nelfinavir has been used to treat this adverse effect in adults without affecting plasma concentrations of nelfinavir or its major metabolite.

• Fat redistribution: May cause redistribution of fat (eg, buffalo hump, peripheral wasting with increased abdominal girth, cushingoid appearance).

• Immune reconstitution syndrome: Patients may develop immune reconstitution syndrome resulting in the occurrence of an inflammatory response to an indolent or residual opportunistic infection during initial HIV treatment or activation of autoimmune disorders (eg, Graves disease, polymyositis, Guillain-Barré syndrome) later in therapy; further evaluation and treatment may be required.

Disease-related concerns:

• Diabetes: Changes in glucose tolerance, hyperglycemia, exacerbation of diabetes, DKA, and new-onset diabetes mellitus have been reported in patients receiving protease inhibitors.

• Hemophilia A or B: Use with caution in patients with hemophilia A or B; increased bleeding during protease inhibitor therapy has been reported.

• Hepatic impairment: May cause hepatitis and/or exacerbate preexisting hepatic dysfunction; use with caution in patients with underlying hepatic disease, such as hepatitis B or C or cirrhosis; use not recommended with moderate-to-severe impairment.

Monitoring Parameters

Liver function tests, viral load, CD4 count, triglycerides, cholesterol, blood glucose, CBC with differential

Reproductive Considerations

Based on the Health and Humans Services (HHS) perinatal HIV guidelines, nelfinavir is not one of the recommended antiretroviral agents for use in females living with HIV who are trying to conceive.

Females living with HIV not planning a pregnancy may use any available type of contraception, considering possible drug interactions and contraindications of the specific method. Consult the drug interactions database for more detailed information specific to use of nelfinavir and specific contraceptives.

For males and females living with HIV and planning a pregnancy, maximum viral suppression below the limits of detection with antiretroviral therapy (ART), modification of therapy (if needed), optimization of the woman’s health, and a discussion of the potential risks and benefits of ART therapy during pregnancy is recommended prior to conception (HHS [perinatal] 2019).

Pregnancy Considerations

Nelfinavir crosses the human placenta.

Outcome information specific to nelfinavir use in pregnancy is no longer being reviewed and updated in the Health and Humans Services (HHS) perinatal guidelines. Maternal antiretroviral therapy (ART) may be associated with adverse pregnancy outcomes including preterm delivery, stillbirth, low birth weight, and small for gestational age infants. Actual risks may be influenced by maternal factors, such as disease severity, gestational age at initiation of therapy, and specific ART regimen; therefore, close fetal monitoring is recommended. Because there is clear benefit to appropriate treatment, maternal ART should not be withheld due to concerns for adverse neonatal outcomes. Long-term follow-up is recommended for all infants exposed to antiretroviral medications; children without HIV but who were exposed to ART in utero and develop significant organ system abnormalities of unknown etiology (particularly of the CNS or heart) should be evaluated for potential mitochondrial dysfunction. Hyperglycemia, new onset of diabetes mellitus, or diabetic ketoacidosis have been reported with protease inhibitors; it is not clear if pregnancy increases this risk. Consider performing the standard glucose screening test earlier in pregnancy in women who initiated protease inhibitor therapy prior to conception.

Based on the HHS perinatal HIV guidelines, nelfinavir is not one of the recommended antiretroviral agents for use during pregnancy.

In general, ART is recommended for all pregnant females living with HIV to keep the viral load below the limit of detection and reduce the risk of perinatal transmission. Therapy should be individualized following a discussion of the potential risks and benefits of treatment during pregnancy. Monitoring of pregnant females is more frequent than in nonpregnant adults. ART should be continued postpartum for all females living with HIV and can be modified after delivery.

Health care providers are encouraged to enroll pregnant females exposed to antiretroviral medications as early in pregnancy as possible in the Antiretroviral Pregnancy Registry (1-800-258-4263 or http://www.APRegistry.com). Health care providers caring for pregnant females living with HIV and their infants may contact the National Perinatal HIV Hotline (1-888-448-8765) for clinical consultation (HHS [perinatal] 2019).

Patient Education

What is this drug used for?

• It is used to treat HIV infection.

All drugs may cause side effects. However, many people have no side effects or only have minor side effects. Call your doctor or get medical help if any of these side effects or any other side effects bother you or do not go away:

• Nausea

• Abdominal pain

• Passing gas

• Lack of appetite

• Diarrhea

WARNING/CAUTION: Even though it may be rare, some people may have very bad and sometimes deadly side effects when taking a drug. Tell your doctor or get medical help right away if you have any of the following signs or symptoms that may be related to a very bad side effect:

• Infection

• High blood sugar like confusion, feeling sleepy, more thirst, hunger, passing urine more often, flushing, fast breathing, or breath that smells like fruit

• Bruising

• Bleeding

• Change in body fat

• Signs of an allergic reaction, like rash; hives; itching; red, swollen, blistered, or peeling skin with or without fever; wheezing; tightness in the chest or throat; trouble breathing, swallowing, or talking; unusual hoarseness; or swelling of the mouth, face, lips, tongue, or throat.

Note: This is not a comprehensive list of all side effects. Talk to your doctor if you have questions.

Consumer Information Use and Disclaimer: This information should not be used to decide whether or not to take this medicine or any other medicine. Only the healthcare provider has the knowledge and training to decide which medicines are right for a specific patient. This information does not endorse any medicine as safe, effective, or approved for treating any patient or health condition. This is only a limited summary of general information about the medicine's uses from the patient education leaflet and is not intended to be comprehensive. This limited summary does NOT include all information available about the possible uses, directions, warnings, precautions, interactions, adverse effects, or risks that may apply to this medicine. This information is not intended to provide medical advice, diagnosis or treatment and does not replace information you receive from the healthcare provider. For a more detailed summary of information about the risks and benefits of using this medicine, please speak with your healthcare provider and review the entire patient education leaflet.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.