Skip to main content

Drug Interaction Report

4 potential interactions and/or warnings found for the following 2 drugs:

Filter by interaction and/or warning

Interactions between your drugs

Moderate

demeclocycline dicumarol

Applies to: demeclocycline, dicumarol

MONITOR: Tetracyclines may increase the hypoprothrombinemic effects of warfarin and similar anticoagulants. The mechanism of interaction has not been established, but may involve depression of plasma prothrombin activity or suppression of vitamin K-producing bacteria in the gastrointestinal tract. The latter may be of limited clinical importance, except in patients whose dietary intake of vitamin K is severely reduced. There have been case reports of bruising, hematomas, and bleeding in association with increased prothrombin times or INRs in patients stabilized on warfarin and other coumarins several days to weeks following the addition of a tetracycline antibiotic. An early study from 1962 reported that 6 out of 9 anticoagulant patients had a significant fall in their prothrombin-proconvertin concentration when treated with chlortetracycline 250 mg four times daily for 4 days, indicating that these patients were at a greater risk of bleeding. In a population-based cohort study of 1124 patients receiving acenocoumarol or phenprocoumon over a 7.75-year period, Dutch investigators found that doxycyline use increased the risk of over-anticoagulation (defined as INR >=6.0) with an adjusted relative risk of 4.3. The risk was highest 4 or more days after starting doxycycline. In subsequent cohort studies, the same group of investigators also reported that the relative risk of hospitalization for bleeding was increased in patients receiving acenocoumarol or phenprocoumon concomitantly with doxycycline or tetracycline.

MANAGEMENT: Caution is advised when vitamin K antagonists are used with tetracyclines. The INR should be checked frequently and the anticoagulant dosage adjusted accordingly; particularly following initiation or discontinuation of tetracycline therapy in patients who are stabilized on their anticoagulant regimen. Patients should be advised to promptly report any signs of bleeding to their doctor, including pain, swelling, headache, dizziness, weakness, prolonged bleeding from cuts, increased menstrual flow, vaginal bleeding, nosebleeds, bleeding of gums from brushing, unusual bleeding or bruising, red or brown urine, or red or black stools.

References (21)
  1. Westfall LK, Mintzer DL, Wiser TH (1980) "Potentiation of warfarin by tetracycline." Am J Hosp Pharm, 37, 1620, 5
  2. Ku LL, Ward CO, Durgin SJ (1970) "A clinical study of drug interaction and anticoagulant therapy." Drug Intell Clin Pharm, 4, p. 300-6
  3. Koch-Weser J, Sellers EM (1971) "Drug interactions with coumarin anticoagulants (second of two parts)." N Engl J Med, 285, p. 547-58
  4. Magid E (1962) "Tolerance to anticoagulants during antibiotic therapy." Scand J Clin Lab Invest, 14, p. 565-6
  5. O'Donnell D (1989) "Antibiotic-induced potentiation of oral anticoagulant agents." Med J Aust, 150, p. 163-4
  6. Caraco Y, Rubinow A (1992) "Enhanced anticoagulant effect of coumarin derivatives induced by doxycycline coadministration." Ann Pharmacother, 26, p. 1084-6
  7. Udall JA (1965) "Human sources and absorption of vitamin K in relation to anticoagulation stability." JAMA, 194, p. 107-9
  8. (2001) "Product Information. Declomycin (demeclocycline)." Lederle Laboratories
  9. Wells PS, Holbrook AM, Crowther NR, Hirsh J (1994) "Interactions of warfarin with drugs and food." Ann Intern Med, 121, p. 676-83
  10. Baciewicz AM, Bal BS (2001) "Bleeding associated with doxycycline and warfarin treatment." Arch Intern Med, 161, p. 1231
  11. Visser LE, Penning-Van Bees FJ, Harrie Kasbergen AA, et al. (2002) "Overanticoagulation associated with combined use of antibacterial drugs and acenocoumarol or phenprocoumon anticoagulants." Thromb Haemost, 88, p. 705-10
  12. Penning-van Beest F, Erkens J, Petersen KU, Koelz HR, Herings R (2005) "Main comedications associated with major bleeding during anticoagulant therapy with coumarins." Eur J Clin Pharmacol, 61, p. 439-44
  13. Hasan SA (2007) "Interaction of doxycycline and warfarin: an enhanced anticoagulant effect." Cornea, 26, p. 742-3
  14. Penning-van Beest FJ, Koerselman J, Herings RM (2008) "Risk of major bleeding during concomitant use of antibiotic drugs and coumarin anticoagulants." J Thromb Haemost, 6, p. 284-90
  15. (2018) "Product Information. Xerava (eravacycline)." Tetraphase Pharmaceuticals, Inc
  16. (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
  17. (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.
  18. Xue L, Ding Y, Qin Q, et al. (2023) Assessment of the impact of intravenous antibiotics treatment on gut microbiota in patients: clinical data from pre-and post-cardiac surgery. https://www.frontiersin.org/articles/10.3389/fcimb.2022.1043971/full
  19. (2022) "Product Information. Marevan (warfarin)." Advanz Pharma
  20. (2012) "Product Information. Warfarin Sodium (warfarin)." Camber Pharmaceuticals, Inc
  21. (2023) "Product Information. coUMADIN (warfarin)." Mylan Health Pty Ltd

Drug and food/lifestyle interactions

Moderate

demeclocycline food/lifestyle

Applies to: demeclocycline

ADJUST DOSING INTERVAL: Administration with food, particularly dairy products, significantly reduces tetracycline absorption. The calcium content in some foods can form nonabsorbable chelates with tetracycline.

MANAGEMENT: Tetracycline should be administered one hour before or two hours after meals. Because oral tetracycline has caused rare cases of esophagitis and esophageal ulceration, patients should be advised to take tetracycline with a large glass of water while standing or sitting upright and to avoid laying down immediately afterwards.

References (5)
  1. (2001) "Product Information. Achromycin (tetracycline)." Lederle Laboratories
  2. (2001) "Product Information. Declomycin (demeclocycline)." Lederle Laboratories
  3. (2024) "Product Information. Pylera (bismuth subcitrate potassium/metronidazole/tetracycline)." Flynn Pharma Ltd
  4. (2025) "Product Information. Pylera (bismuth subcitrate potassium/metronidazole/tetracycline)." H2-Pharma LLC
  5. Laboratoires Juvise Pharmaceuticals (2025) Bismuth subcitrate potassium, metronidazole, tetracycline hydrochloride capsules (Pylera) - product monograph. https://pdf.hres.ca/dpd_pm/00076786.PDF
Moderate

dicumarol food/lifestyle

Applies to: dicumarol

MONITOR: Vitamin K may antagonize the hypoprothrombinemic effect of oral anticoagulants. Vitamin K is a cofactor in the synthesis of blood clotting factors that are inhibited by oral anticoagulants, thus intake of vitamin K through supplements or diet can reverse the action of oral anticoagulants. Resistance to oral anticoagulants has been associated with consumption of foods or enteral feedings high in vitamin K content. Likewise, a reduction of vitamin K intake following stabilization of anticoagulant therapy may result in elevation of the INR and bleeding complications. Foods rich in vitamin K include beef liver, broccoli, Brussels sprouts, cabbage, collard greens, endive, kale, lettuce, mustard greens, parsley, soy beans, spinach, Swiss chard, turnip greens, watercress, and other green leafy vegetables. Moderate to high levels of vitamin K are also found in other foods such as asparagus, avocados, dill pickles, green peas, green tea, canola oil, margarine, mayonnaise, olive oil, and soybean oil. Snack foods containing the fat substitute, olestra, are fortified with 80 mcg of vitamin K per each one ounce serving so as to offset any depletion of vitamin K that may occur due to olestra interference with its absorption. Whether these foods can alter the effect of oral anticoagulants has not been extensively studied. One small study found that moderate consumption (1.5 servings/day) does not significantly affect the INR after one week in patients receiving long-term anticoagulation.

Consumption of large amounts of mango fruit has been associated with enhanced effects of warfarin. The exact mechanism of interaction is unknown but may be related to the vitamin A content, which may inhibit metabolism of warfarin. In one report, thirteen patients with an average INR increase of 38% reportedly had consumed one to six mangos daily 2 to 30 days prior to their appointment. The average INR decreased by 17.7% after discontinuation of mango ingestion for 2 weeks. Rechallenge in two patients appeared to confirm the interaction.

Limited data also suggest a potential interaction between warfarin and cranberry juice resulting in changes in the INR and/or bleeding complications. The mechanism is unknown but may involve alterations in warfarin metabolism induced by flavonoids contained in cranberry juice. At least a dozen reports of suspected interaction have been filed with the Committee on Safety of Medicines in the U.K. since 1999, including one fatality. In the fatal case, the patient's INR increased dramatically (greater than 50) six weeks after he started drinking cranberry juice, and he died from gastrointestinal and pericardial hemorrhage. However, the patient was also taking cephalexin for a chest infection and had not eaten for two weeks prior to hospitalization, which may have been contributing factors. Other cases involved less dramatic increases or instabilities in INR following cranberry juice consumption, and a decrease was reported in one, although details are generally lacking. In a rare published report, a 71-year-old patient developed hemoptysis, hematochezia, and shortness of breath two weeks after he started drinking 24 ounces of cranberry juice a day. Laboratory test results on admission revealed a decrease in hemoglobin, an INR greater than 18, and prothrombin time exceeding 120 seconds. The patient recovered after warfarin doses were withheld for several days and he was given packed red blood cells, fresh-frozen plasma, and subcutaneous vitamin K. It is not known if variations in the constituents of different brands of cranberry juice may affect the potential for drug interactions.

There have been several case reports in the medical literature of patients consuming grapefruit, grapefruit juice, or grapefruit seed extract who experienced increases in INR. R(+) warfarin, the less active of the two enantiomers of warfarin, is partially metabolized by CYP450 3A4. Depending on brand, concentration, dose and preparation, grapefruit juice may be considered a moderate to strong inhibitor of CYP450 3A4, thus coadministration with warfarin may decrease the clearance of R(+) warfarin. However, the clinical significance of this effect has not been established. A pharmacokinetic study found no effect on the PT or INR values of nine warfarin patients given 8 oz of grapefruit juice three times a day for one week.

A patient who was stabilized on warfarin developed a large hematoma in her calf in association with an elevated INR of 14 following consumption of approximately 3 liters of pomegranate juice in the week prior to admission. In vitro data suggest that pomegranate juice can inhibit CYP450 2C9, the isoenzyme responsible for the metabolic clearance of the biologically more active S(-) enantiomer of warfarin. In rats, pomegranate juice has also been shown to inhibit intestinal CYP450 3A4, the isoenzyme that contributes to the metabolism of R(+) warfarin.

Black currant juice and black currant seed oil may theoretically increase the risk of bleeding or bruising if used in combination with anticoagulants. The proposed mechanism is the antiplatelet effects of the gamma-linolenic acid constituent in black currants.

Soy protein in the form of soy milk was thought to be responsible for a case of possible warfarin antagonism in an elderly male stabilized on warfarin. The exact mechanism of interaction is unknown, as soy milk contains only trace amounts of vitamin K. Subtherapeutic INR values were observed approximately 4 weeks after the patient began consuming soy milk daily for the treatment of hypertriglyceridemia. No other changes in diet or medications were noted during this time. The patient's INR returned to normal following discontinuation of the soy milk with no other intervention.

An interaction with chewing tobacco was suspected in a case of warfarin therapy failure in a young male who was treated with up to 25 to 30 mg/day for 4.5 years. The inability to achieve adequate INR values led to eventual discontinuation of the chewing tobacco, which resulted in an INR increase from 1.1 to 2.3 in six days. The authors attributed the interaction to the relatively high vitamin K content in smokeless tobacco.

MANAGEMENT: Intake of vitamin K through supplements or diet should not vary significantly during oral anticoagulant therapy. The diet in general should remain consistent, as other foods containing little or no vitamin K such as mangos and soy milk have been reported to interact with warfarin. Some experts recommend that continuous enteral nutrition should be interrupted for one hour before and one hour after administration of the anticoagulant dose and that enteral formulas containing soy protein should be avoided. Patients should also consider avoiding or limiting the consumption of cranberry juice or other cranberry formulations (e.g., encapsulated dried cranberry powder), pomegranate juice, black currant juice, and black currant seed oil.

References (37)
  1. Andersen P, Godal HC (1975) "Predictable reduction in anticoagulant activity of warfarin by small amounts of vitamin K." Acta Med Scand, 198, p. 269-70
  2. Westfall LK (1981) "An unrecognized cause of warfarin resistance." Drug Intell Clin Pharm, 15, p. 131
  3. Lee M, Schwartz RN, Sharifi R (1981) "Warfarin resistance and vitamin K." Ann Intern Med, 94, p. 140-1
  4. Zallman JA, Lee DP, Jeffrey PL (1981) "Liquid nutrition as a cause of warfarin resistance." Am J Hosp Pharm, 38, p. 1174
  5. Griffith LD, Olvey SE, Triplett WC (1982) "Increasing prothrombin times in a warfarin-treated patient upon withdrawal of ensure plus." Crit Care Med, 10, p. 799-800
  6. Kempin SJ (1983) "Warfarin resistance caused by broccoli." N Engl J Med, 308, p. 1229-30
  7. Watson AJ, Pegg M, Green JR (1984) "Enteral feeds may antagonise warfarin." Br Med J, 288, p. 557
  8. Walker FB (1984) "Myocardial infarction after diet-induced warfarin resistance." Arch Intern Med, 144, p. 2089-90
  9. Howard PA, Hannaman KN (1985) "Warfarin resistance linked to enteral nutrition products." J Am Diet Assoc, 85, p. 713-5
  10. Karlson B, Leijd B, Hellstrom K (1986) "On the influence of vitamin K-rich vegetables and wine on the effectiveness of warfarin treatment." Acta Med Scand, 220, p. 347-50
  11. Pedersen FM, Hamberg O, Hess K, Ovesen L (1991) "The effect of dietary vitamin K on warfarin-induced anticoagulation." J Intern Med, 229, p. 517-20
  12. Parr MD, Record KE, Griffith GL, et al. (1982) "Effect of enteral nutrition on warfarin therapy." Clin Pharm, 1, p. 274-6
  13. Wells PS, Holbrook AM, Crowther NR, Hirsh J (1994) "Interactions of warfarin with drugs and food." Ann Intern Med, 121, p. 676-83
  14. O'Reilly RA, Rytand DA (1980) ""Resistance" to warfarin due to unrecognized vitamin K supplementation." N Engl J Med, 303, p. 160-1
  15. Kazmier FJ, Spittell JA Jr (1970) "Coumarin drug interactions." Mayo Clin Proc, 45, p. 249-55
  16. Chow WH, Chow TC, Tse TM, Tai YT, Lee WT (1990) "Anticoagulation instability with life-threatening complication after dietary modification." Postgrad Med J, 66, p. 855-7
  17. MacLeod SM, Sellers EM (1976) "Pharmacodynamic and pharmacokinetic drug interactions with coumarin anticoagulants." Drugs, 11, p. 461-70
  18. Sullivan DM, Ford MA, Boyden TW (1998) "Grapefruit juice and the response to warfarin." Am J Health Syst Pharm, 55, p. 1581-3
  19. Harrell CC, Kline SS (1999) "Vitamin K-supplemented snacks containing olestra: Implication for patients taking warfarin." Jama J Am Med Assn, 282, p. 1133-4
  20. Beckey NP, Korman LB, Parra D (1999) "Effect of the moderate consumption of olestra in patients receiving long-term warfarin therapy." Pharmacotherapy, 19, p. 1075-9
  21. Monterrey-Rodriguez J (2002) "Interaction between warfarin and mango fruit." Ann Pharmacother, 36, p. 940-1
  22. Cambria-Kiely JA (2002) "Effect of soy milk on warfarin efficacy." Ann Pharmacother, 36, p. 1893-6
  23. MHRA. Mediciines and Healthcare products Regulatory Agency. Committee on Safety of Medicines (2003) Possible interaction between warfarin and cranberry juice. http://medicines.mhra.gov.uk/ourwork/monitorsafequalmed/currentproblems/currentproblems.htm
  24. Suvarna R, Pirmohamed M, Henderson L (2003) "Possible interaction between warfarin and cranberry juice." BMJ, 327, p. 1454
  25. Kuykendall JR, Houle MD, Rhodes RS (2004) "Possible warfarin failure due to interaction with smokeless tobacco." Ann Pharmacother, 38, p. 595-7
  26. Grant P (2004) "Warfarin and cranberry juice: an interaction?" J Heart Valve Dis, 13, p. 25-6
  27. Rindone JP, Murphy TW (2006) "Warfarin-cranberry juice interaction resulting in profound hypoprothrombinemia and bleeding." Am J Ther, 13, p. 283-4
  28. Brandin H, Myrberg O, Rundlof T, Arvidsson AK, Brenning G (2007) "Adverse effects by artificial grapefruit seed extract products in patients on warfarin therapy." Eur J Clin Pharmacol, 63, p. 565-70
  29. Agencia Española de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de información online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  30. Griffiths AP, Beddall A, Pegler S (2008) "Fatal haemopericardium and gastrointestinal haemorrhage due to possible interaction of cranberry juice with warfarin." J R Soc Health, 128, p. 324-6
  31. Guo LQ, Yamazoe Y (2004) "Inhibition of cytochrome P450 by furanocoumarins in grapefruit juice and herbal medicines." Acta Pharmacol Sin, 25, p. 129-36
  32. Hamann GL, Campbell JD, George CM (2011) "Warfarin-cranberry juice interaction." Ann Pharmacother, 45, e17
  33. Jarvis S, Li C, Bogle RG (2010) "Possible interaction between pomegranate juice and warfarin." Emerg Med J, 27, p. 74-5
  34. Roberts D, Flanagan P (2011) "Case report: Cranberry juice and warfarin." Home Healthc Nurse, 29, p. 92-7
  35. Ge B, Zhang Z, Zuo Z (2014) "Updates on the clinical evidenced herb-warfarin interactions." Evid Based Complement Alternat Med, 2014, p. 957362
  36. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67
  37. Bodiford AB, Kessler FO, Fermo JD, Ragucci KR (2013) "Elevated international normalized ratio with the consumption of grapefruit and use of warfarin." SAGE Open Med Case Rep, p. 1-3
Moderate

demeclocycline food/lifestyle

Applies to: demeclocycline

GENERALLY AVOID: The oral bioavailability of quinolone and tetracycline antibiotics may be reduced by concurrent administration of preparations containing polyvalent cations such as aluminum, calcium, iron, magnesium, and zinc. Therapeutic failure may result. The proposed mechanism is chelation of quinolone and tetracycline antibiotics by di- and trivalent cations, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. Reduced gastrointestinal absorption of the cations should also be considered.

MANAGEMENT: Concomitant administration of oral quinolone and tetracycline antibiotics with preparations containing aluminum, calcium, iron, magnesium, and/or zinc salts should generally be avoided. Otherwise, the times of administration should be staggered by as much as possible to minimize the potential for interaction. Quinolones should typically be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation preparations, depending on the quinolone and formulation. Likewise, tetracyclines and polyvalent cation preparations should typically be administered 2 to 4 hours apart. The prescribing information for the antibiotic should be consulted for more specific dosing recommendations.

References (51)
  1. Polk RE, Helay DP, Sahai J, Drwal L, Racht E (1989) "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother, 33, p. 1841-4
  2. Nix DE, Watson WA, Lener ME, et al. (1989) "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther, 46, p. 700-5
  3. Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC (1990) "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother, 34, p. 931-3
  4. Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT (1992) "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother, 36, p. 830-2
  5. Yuk JH (1989) "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc, 262, p. 901
  6. Neuvonen PJ (1976) "Interactions with the absorption of tetracyclines." Drugs, 11, p. 45-54
  7. Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P (1989) "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother, 33, p. 1901-7
  8. Nguyen VX, Nix DE, Gillikin S, Schentag JJ (1989) "Effect of oral antacid administration on the pharmacokinetics of intravenous doxycycline." Antimicrob Agents Chemother, 33, p. 434-6
  9. Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW (1992) "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol, 33, p. 115-6
  10. Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ (1989) "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother, 33, p. 99-102
  11. Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A (1990) "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother, 34, p. 432-5
  12. Akerele JO, Okhamafe AO (1991) "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother, 28, p. 87-94
  13. Gothoni G, Neuvonen PJ, Mattila M, Hackman R (1972) "Iron-tetracycline interaction: effect of time interval between the drugs." Acta Med Scand, 191, p. 409-11
  14. Garty M, Hurwitz A (1980) "Effect of cimetidine and antacids on gastrointestinal absorption of tetracycline." Clin Pharmacol Ther, 28, p. 203-7
  15. Gotz VP, Ryerson GG (1986) "Evaluation of tetracycline on theophylline disposition in patients with chronic obstructive airways disease." Drug Intell Clin Pharm, 20, p. 694-6
  16. McCormack JP, Reid SE, Lawson LM (1990) "Theophylline toxicity induced by tetracycline." Clin Pharm, 9, p. 546-9
  17. D'Arcy PF, McElnay JC (1987) "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm, 21, p. 607-17
  18. Wadworth AN, Goa KL (1991) "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs, 42, p. 1018-60
  19. Shimada J, Shiba K, Oguma T, et al. (1992) "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother, 36, p. 1219-24
  20. Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
  21. Venho VM, Salonen RO, Mattila MJ (1978) "Modification of the pharmacokinetics of doxycycline in man by ferrous sulphate or charcoal." Eur J Clin Pharmacol, 14, p. 277-80
  22. (2002) "Product Information. Minocin (minocycline)." Lederle Laboratories
  23. Sahai J, Healy DP, Stotka J, Polk RE (1993) "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol, 35, p. 302-4
  24. (2001) "Product Information. Declomycin (demeclocycline)." Lederle Laboratories
  25. Lehto P, Kivisto KT (1994) "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother, 38, p. 248-51
  26. Noyes M, Polk RE (1988) "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med, 109, p. 168-9
  27. Grasela TH Jr, Schentag JJ, Sedman AJ, et al. (1989) "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother, 33, p. 615-7
  28. Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
  29. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  30. Lehto P, Kivisto KT (1994) "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther, 56, p. 477-82
  31. Bateman FJ (1970) "Effects of tetracyclines." Br Med J, 4, p. 802
  32. Neuvonen PJ, Gothoni G, Hackman R, Bjorksten K (1970) "Interference of iron with the absorption of tetracyclines in man." Br Med J, 4, p. 532-4
  33. Greenberger NJ (1971) "Absorption of tetracyclines: interference by iron." Ann Intern Med, 74, p. 792-3
  34. Neuvonen PJ, Penttila O (1974) "Effect of oral ferrous sulphate on the half-life of doxycycline in man." Eur J Clin Pharmacol, 7, p. 361-3
  35. Spivey JM, Cummings DM, Pierson NR (1996) "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy, 16, p. 314-6
  36. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  37. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  38. (2001) "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer
  39. (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
  40. Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother, 39 Suppl B, p. 93-7
  41. Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H (1997) "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother, 41, p. 1668-72
  42. Honig PK, Gillespie BK (1998) "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet, 35, p. 167-71
  43. Johnson RD, Dorr MB, Talbot GH, Caille G (1998) "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther, 20, p. 1149-58
  44. Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H (1999) "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother, 43, p. 1067-71
  45. Allen A, Vousden M, Porter A, Lewis A (1999) "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy, 45, p. 504-11
  46. Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S (2000) "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol, 49, p. 98-103
  47. (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
  48. (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
  49. (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
  50. (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
  51. (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.

Therapeutic duplication warnings

No duplication warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

See also:

Learn more

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.