Drug Interactions between ketamine and Mondoxyne NL
This report displays the potential drug interactions for the following 2 drugs:
- ketamine
- Mondoxyne NL (doxycycline)
Interactions between your drugs
No interactions were found between ketamine and Mondoxyne NL. However, this does not necessarily mean no interactions exist. Always consult your healthcare provider.
ketamine
A total of 422 drugs are known to interact with ketamine.
- Ketamine is in the drug class general anesthetics.
-
Ketamine is used to treat the following conditions:
- Anesthesia
- Depression (off-label)
- Pain (off-label)
Mondoxyne NL
A total of 226 drugs are known to interact with Mondoxyne NL.
- Mondoxyne nl is in the drug class tetracyclines.
- Mondoxyne nl is used to treat the following conditions:
Drug and food interactions
ketamine food
Applies to: ketamine
MONITOR CLOSELY: Coadministration of ketamine with other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. In addition, opioid analgesics, barbiturates, and benzodiazepines may prolong the time to complete recovery from anesthesia.
MANAGEMENT: During concomitant use of ketamine with other CNS depressants, including alcohol, close monitoring of neurologic status and respiratory parameters, including respiratory rate and pulse oximetry, is recommended. Dosage adjustments should be considered according to the patient's clinical situation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (3)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
ketamine food
Applies to: ketamine
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of ketamine. Use in combination may result in additive central nervous system (CNS) depression and/or impairment of judgment, thinking, and psychomotor skills.
GENERALLY AVOID: Coadministration of oral ketamine with grapefruit juice may significantly increase the plasma concentrations of S(+) ketamine, the dextrorotatory enantiomer of ketamine. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. When a single 0.2 mg/kg dose of S(+) ketamine was administered orally on study day 5 with grapefruit juice (200 mL three times daily for 5 days) in 12 healthy volunteers, mean S(+) ketamine peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 2.1- and 3.0-fold, respectively, compared to administration with water. In addition, the elimination half-life of S(+) ketamine increased by 24% with grapefruit juice, and the ratio of the main metabolite norketamine to ketamine was decreased by 57%. The pharmacodynamics of ketamine were also altered by grapefruit juice. Specifically, self-rated relaxation was decreased and performance in the digit symbol substitution test was increased with grapefruit juice, but other behavioral or analgesic effects were not affected.
MANAGEMENT: Patients receiving ketamine should not drink alcohol. Caution is advised when ketamine is used in patients with acute alcohol intoxication or a history of chronic alcoholism. Following anesthesia with ketamine, patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination, such as driving or operating hazardous machinery, for at least 24 hours and until they know how the medication affects them. Patients treated with oral ketamine should also avoid consumption of grapefruit and grapefruit juice during treatment. Otherwise, dosage reductions of oral ketamine should be considered.
References (4)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
- Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Neuvonen PJ, Olkkola KT (2012) "S-ketamine concentrations are greatly increased by grapefruit juice." Eur J Clin Pharmacol, 68, p. 979-86
doxycycline food
Applies to: Mondoxyne NL (doxycycline)
GENERALLY AVOID: The bioavailability of oral tetracyclines and iron salts may be significantly decreased during concurrent administration. Therapeutic failure may result. The proposed mechanism is chelation of tetracyclines by the iron cation, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. In ten healthy volunteers, simultaneous oral administration of ferrous sulfate 200 mg and single doses of various tetracyclines (200 mg to 500 mg) resulted in reductions in the serum levels of methacycline and doxycycline by 80% to 90%, oxytetracycline by 50% to 60%, and tetracycline by 40% to 50%. In another study, 300 mg of ferrous sulfate reduced the absorption of tetracycline by 81% and that of minocycline by 77%. Conversely, the absorption of iron has been shown to be decreased by up to 78% in healthy subjects and up to 65% in patients with iron depletion when ferrous sulfate 250 mg was administered with tetracycline 500 mg. Available data suggest that administration of iron 3 hours before or 2 hours after a tetracycline largely prevents the interaction with most tetracyclines except doxycycline. Due to extensive enterohepatic cycling, iron binding may occur with doxycycline even when it is given parenterally. It has also been shown that when iron is administered up to 11 hours after doxycycline, serum concentrations of doxycycline may still be reduced by 20% to 45%.
MANAGEMENT: Coadministration of a tetracycline with any iron-containing product should be avoided if possible. Otherwise, patients should be advised to stagger the times of administration by at least three to four hours, although separating the doses may not prevent the interaction with doxycycline.
References (11)
- Neuvonen PJ (1976) "Interactions with the absorption of tetracyclines." Drugs, 11, p. 45-54
- Gothoni G, Neuvonen PJ, Mattila M, Hackman R (1972) "Iron-tetracycline interaction: effect of time interval between the drugs." Acta Med Scand, 191, p. 409-11
- Venho VM, Salonen RO, Mattila MJ (1978) "Modification of the pharmacokinetics of doxycycline in man by ferrous sulphate or charcoal." Eur J Clin Pharmacol, 14, p. 277-80
- (2002) "Product Information. Minocin (minocycline)." Lederle Laboratories
- Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
- Bateman FJ (1970) "Effects of tetracyclines." Br Med J, 4, p. 802
- Neuvonen PJ, Gothoni G, Hackman R, Bjorksten K (1970) "Interference of iron with the absorption of tetracyclines in man." Br Med J, 4, p. 532-4
- Greenberger NJ (1971) "Absorption of tetracyclines: interference by iron." Ann Intern Med, 74, p. 792-3
- Neuvonen PJ, Penttila O (1974) "Effect of oral ferrous sulphate on the half-life of doxycycline in man." Eur J Clin Pharmacol, 7, p. 361-3
- (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
- (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.
doxycycline food
Applies to: Mondoxyne NL (doxycycline)
Chronic alcohol consumption may enhance the elimination of doxycycline. The mechanism is induction of hepatic microsomal enzymes by alcohol. In one study, the half-life of doxycycline in six alcoholics was 10.5 hours, compared with 14.7 hours in six control patients. In addition, half the alcoholic patients had serum concentrations below what is generally considered the minimum therapeutic concentration (0.5 mcg/mL) at 12 to 24 hours after the dose. The investigators suggest that twice-a-day dosing may be indicated in these patients, especially if additional inducing drugs are used. The elimination of other tetracyclines probably is not affected by alcohol consumption.
References (1)
- Neuvonen PJ, Penttila O, Roos M, Tirkkonen J (1976) "Effect of long-term alcohol consumption on the half-life of tetracycline and doxycycline in man." Int J Clin Pharmacol Biopharm, 14, p. 303-7
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.