Skip to main content

Drug Interactions between dexamethasone / ketorolac / moxifloxacin and leflunomide

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

dexAMETHasone leflunomide

Applies to: dexamethasone / ketorolac / moxifloxacin and leflunomide

MONITOR CLOSELY: The use of leflunomide with other immunosuppressive or myelosuppressive agents may increase the risk of infections. The risk is thought to extend to teriflunomide, its principal active metabolite, because recommended dosages of both result in a similar range of plasma concentrations of teriflunomide. Serious infections including sepsis, as well as opportunistic infections like Pneumocystis jiroveci pneumonia, pulmonary and extrapulmonary tuberculosis, and aspergillosis have been reported with the use of leflunomide, particularly in patients on concomitant hematotoxic therapy. Agents that may be significantly immuno- or myelosuppressive include antineoplastic agents, radiation, zidovudine, linezolid, some antirheumatic agents, high dosages of corticosteroids or adrenocorticotropic agents (greater than 10 mg/day to 1 mg/kg/day, whichever is less, of prednisone or equivalent for more than 2 weeks), and long-term topical or inhaled corticosteroids. Rare cases of pancytopenia, agranulocytosis, and thrombocytopenia have also occurred with leflunomide alone, but were most frequent in the presence of concomitant or recent use of methotrexate or other myelotoxic agents. Due to the prolonged elimination half-life of leflunomide's active metabolite, an interaction may occur even when hematotoxic agents are initiated after the discontinuation of leflunomide. Administering a washout procedure with cholestyramine or activated charcoal helps to accelerate elimination of the active metabolite from plasma and reduce the overlap of systemic exposure to these agents.

MANAGEMENT: Close monitoring for the development of infection is recommended if leflunomide or teriflunomide is used in patients who are currently receiving or have recently received other immuno- or myelosuppressive agents, and vice versa. Platelet, white blood cell count, and hemoglobin or hematocrit should be evaluated at baseline and regularly during therapy. Patients should be advised to contact their physician if they develop signs and symptoms of infection such as fever, chills, diarrhea, sore throat, muscle aches, shortness of breath, blood in phlegm, weight loss, red or inflamed skin, body sores, and pain or burning during urination. If evidence of serious infection or bone marrow suppression occurs, treatment should be stopped, and cholestyramine or charcoal administered to accelerate elimination of leflunomide's active metabolite from plasma, which otherwise may take up to two years.

References (2)
  1. (2001) "Product Information. Arava (leflunomide)." Hoechst Marion Roussel
  2. (2012) "Product Information. Aubagio (teriflunomide)." Genzyme Corporation
Major

dexAMETHasone moxifloxacin

Applies to: dexamethasone / ketorolac / moxifloxacin and dexamethasone / ketorolac / moxifloxacin

MONITOR CLOSELY: Concomitant administration of corticosteroids may potentiate the risk of tendinitis and tendon rupture associated with fluoroquinolone treatment. The mechanism is unknown. Tendinitis and tendon rupture have most frequently involved the Achilles tendon, although cases involving the rotator cuff (the shoulder), the hand, the biceps, and the thumb have also been reported. Some have required surgical repair or resulted in prolonged disability. Tendon rupture can occur during or up to several months after completion of fluoroquinolone therapy.

MANAGEMENT: Caution is recommended if fluoroquinolones are prescribed in combination with corticosteroids, particularly in patients with other concomitant risk factors (e.g., age over 60 years; recipient of kidney, heart, and/or lung transplant). Patients should be advised to stop taking the fluoroquinolone, avoid exercise and use of the affected area, and promptly contact their physician if they experience pain, swelling, or inflammation of a tendon. In general, fluoroquinolones should only be used to treat conditions that are proven or strongly suspected to be caused by bacteria and only if the benefits outweigh the risks.

References (7)
  1. (2002) "Product Information. Cipro (ciprofloxacin)." Bayer
  2. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  3. (2001) "Product Information. Avelox (moxifloxacin)." Bayer
  4. Khaliq Y, Zhanel GG (2003) "Fluoroquinolone-Associated Tendinopathy: A Critical Review of the Literature." Clin Infect Dis, 36, p. 1404-1410
  5. van der Linden PD, Sturkenboom MC, Herings RM, Leufkens HM, Rowlands S, Stricker BH (2003) "Increased risk of achilles tendon rupture with quinolone antibacterial use, especially in elderly patients taking oral corticosteroids." Arch Intern Med, 163, p. 1801-7
  6. FDA. U.S. Food and Drug Administration (2008) Information for Healthcare Professionals. Fluoroquinolone Antimicrobial Drugs. FDA Alert [7/8/2008]. http://www.fda.gov/cder/drug/InfoSheets/HCP/fluoroquinolonesHCP.htm
  7. (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
Major

ketorolac leflunomide

Applies to: dexamethasone / ketorolac / moxifloxacin and leflunomide

MONITOR CLOSELY: The recent, concomitant, or subsequent use (without the recommended leflunomide washout period or procedure) of other agents known to induce hepatotoxicity including NSAIDs and salicylates may potentiate the risk of liver injury associated with leflunomide. The risk is thought to extend to teriflunomide, its principal active metabolite, because recommended dosages of both result in a similar range of plasma concentrations of teriflunomide. Elevated liver transaminases, hepatitis, jaundice/cholestasis, hepatic failure, and acute hepatic necrosis have been reported with the use of leflunomide. Liver enzyme elevations were generally mild (2 times the upper limit of normal or less) and resolved while continuing treatment. Marked elevations (greater than 3-fold ULN) occurred infrequently and reversed with dose reduction or discontinuation of treatment in most cases. However, fatalities associated with severe liver injury have also been reported rarely. A 2009 review of leflunomide adverse event reports by the FDA identified 49 cases of severe liver injury, including 14 cases of fatal liver failure, between August 2002 and May 2009. An additional five patients required a liver transplant and nine patients experienced a life-threatening event. In this review, concomitant use of other hepatotoxic drugs and preexisting liver disease were associated with the greatest risk for liver injury during leflunomide treatment. Specifically, 46 of the 49 patients were also taking other medications that have been associated with liver injury including methotrexate, TNF-alfa blockers, hydroxychloroquine, acetaminophen, nonsteroidal anti-inflammatory drugs and statins, and 14 patients had preexisting liver disease such as active or chronic hepatitis and/or a history of alcohol abuse. The estimated duration of leflunomide exposure before onset of severe liver injury ranged from 9 days to 6 years, with the majority occurring within the first 6 to 12 months of treatment.

Pharmacokinetically, the active metabolite of leflunomide has been shown to cause increases of 13% to 50% in the free fraction of diclofenac and ibuprofen. Additionally, in vitro studies indicate that the metabolite inhibits hepatic microsomal enzyme CYP450 2C9, which participates in the metabolism of many NSAIDs. The clinical significance is unknown.

MANAGEMENT: Patients receiving leflunomide or teriflunomide in combination with NSAIDs should be closely monitored for hepatotoxicity. Liver enzymes and bilirubin should be measured prior to initiation of leflunomide/teriflunomide therapy and at least monthly for the first six months of treatment and every 6 to 8 weeks thereafter. Patients with preexisting liver disease or elevated baseline liver enzymes (i.e., ALT greater than two times the upper limit of normal) should not receive leflunomide or teriflunomide. Patients who develop elevated serum ALT greater than three times ULN while receiving these medications should discontinue treatment and be given washout procedures with cholestyramine or activated charcoal to accelerate elimination of leflunomide's active metabolite from plasma, which otherwise may take up to two years. Follow-up monitoring should be conducted at least weekly until the ALT value is within normal range, and washout procedures repeated as necessary. All patients treated with leflunomide or teriflunomide should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, light colored stools, and jaundice.

References (3)
  1. (2001) "Product Information. Arava (leflunomide)." Hoechst Marion Roussel
  2. EMEA (2001) EMEA public statement on leflunomide (ARAVA) - severe and serious hepatic reactions. Available from URL: http://www.eudra.org/emea.html
  3. (2012) "Product Information. Aubagio (teriflunomide)." Genzyme Corporation
Major

leflunomide moxifloxacin

Applies to: leflunomide and dexamethasone / ketorolac / moxifloxacin

MONITOR CLOSELY: The recent, concomitant, or subsequent use (without the recommended leflunomide washout period or procedure) of other agents known to induce hepatotoxicity may potentiate the risk of liver injury associated with leflunomide. The risk is thought to extend to teriflunomide, its principal active metabolite, because recommended dosages of both result in a similar range of plasma concentrations of teriflunomide. Elevated liver transaminases, hepatitis, jaundice/cholestasis, hepatic failure, and acute hepatic necrosis have been reported with the use of leflunomide. Liver enzyme elevations were generally mild (2 times the upper limit of normal or less) and resolved while continuing treatment. Marked elevations (greater than 3-fold ULN) occurred infrequently and reversed with dose reduction or discontinuation of treatment in most cases. However, fatalities associated with severe liver injury have also been reported rarely. A 2009 review of leflunomide adverse event reports by the FDA identified 49 cases of severe liver injury, including 14 cases of fatal liver failure, between August 2002 and May 2009. An additional five patients required a liver transplant and nine patients experienced a life-threatening event. In this review, concomitant use of other hepatotoxic drugs and preexisting liver disease were associated with the greatest risk for liver injury during leflunomide treatment. Specifically, 46 of the 49 patients were also taking other medications that have been associated with liver injury including methotrexate, TNF-alfa blockers, hydroxychloroquine, acetaminophen, nonsteroidal anti-inflammatory drugs and statins, and 14 patients had preexisting liver disease such as active or chronic hepatitis and/or a history of alcohol abuse. The estimated duration of leflunomide exposure before onset of severe liver injury ranged from 9 days to 6 years, with the majority occurring within the first 6 to 12 months of treatment.

MANAGEMENT: Caution is advised if leflunomide or teriflunomide must be used in patients who are currently receiving or have recently received treatment with other hepatotoxic agents (e.g., acetaminophen; alcohol; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; ketolide and macrolide antibiotics; kinase inhibitors; minocycline; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; lipid-lowering medications such as fenofibrate, lomitapide, mipomersen, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice), and vice versa. Liver enzymes and bilirubin should be measured prior to initiation of leflunomide/teriflunomide therapy and at least monthly for the first six months of treatment and every 6 to 8 weeks thereafter. Patients with preexisting liver disease or elevated baseline liver enzymes (i.e., ALT greater than two times ULN) should not receive leflunomide or teriflunomide. Patients who develop elevated serum ALT greater than three times ULN while receiving these medications should discontinue treatment and be given washout procedures with cholestyramine or activated charcoal to accelerate elimination of leflunomide's active metabolite from plasma, which otherwise may take up to two years. Follow-up monitoring should be conducted at least weekly until the ALT value is within normal range, and washout procedures repeated as necessary. All patients treated with leflunomide or teriflunomide should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, malaise, right upper quadrant pain, dark urine, pale stools, and jaundice.

References (3)
  1. (2001) "Product Information. Arava (leflunomide)." Hoechst Marion Roussel
  2. EMEA (2001) EMEA public statement on leflunomide (ARAVA) - severe and serious hepatic reactions. Available from URL: http://www.eudra.org/emea.html
  3. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
Moderate

dexAMETHasone ketorolac

Applies to: dexamethasone / ketorolac / moxifloxacin and dexamethasone / ketorolac / moxifloxacin

MONITOR: The combined use of corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the potential for serious gastrointestinal (GI) toxicity, including inflammation, bleeding, ulceration, and perforation. In a large, case-control study of elderly patients, those who used corticosteroids and NSAIDs concurrently had an estimated relative risk (RR) for peptic ulcer disease and GI hemorrhage of 14.6 compared to those who used neither. Corticosteroid use was associated with a doubling of the risk (estimated RR = 2.0), but the risk was confined to those who also used NSAIDs. It is possible that both categories of agents are ulcerogenic and have additive effects on the GI mucosa during coadministration. Some investigators have also suggested that the primary effect of corticosteroids in this interaction is to delay healing of erosions caused by NSAIDs rather than cause de novo ulcerations.

MANAGEMENT: Caution is advised if corticosteroids and NSAIDs are used together, especially in patients with a prior history of peptic ulcer disease or GI bleeding and in elderly and debilitated patients. During concomitant therapy, patients should be advised to take the medications with food and to immediately report signs and symptoms of GI ulceration and bleeding such as severe abdominal pain, dizziness, lightheadedness, and the appearance of black, tarry stools. The selective use of prophylactic anti-ulcer therapy (e.g., antacids, H2-antagonists) may be considered.

References (11)
  1. Stewart JT, Pennington CR, Pringle R (1985) "Anti-inflammatory drugs and bowel perforations and haemorrhage." Br Med J, 290, p. 787-8
  2. Thomas TP (1984) "The complications of systemic corticosteroid therapy in the elderly." Gerontology, 30, p. 60-5
  3. Messer J, Reitman D, Sacks HS, et al. (1983) "Association of adrenocorticosteroid therapy and peptic-ulcer disease." N Engl J Med, 309, p. 21-4
  4. ReMine SG, McIlrath DC (1980) "Bowel perforation in steroid-treated patients." Ann Surg, 192, p. 581-6
  5. Levy M, Miller DR, Kaufman DW, Siskind V, Schwingl P, Rosenberg L, Strom B, Shapiro S (1988) "Major upper gastrointestinal tract bleeding. Relation to the use of aspirin and other nonnarcotic analgesics." Arch Intern Med, 148, p. 281-5
  6. Kaufman DW, Kelly JP, Sheehan JE, Laszlo A, Wiholm BE, Alfredsson L, Koff RS, Shapiro S (1993) "Nonsteroidal anti-inflammatory drug use in relation to major upper gastrointestinal bleeding." Clin Pharmacol Ther, 53, p. 485-94
  7. Wilcox CM, Shalek KA, Cotsonis G (1994) "Striking prevalence of over-the-counter nonsteroidal anti- inflammatory drug use in patients with upper gastrointestinal hemorrhage." Arch Intern Med, 154, p. 42-6
  8. Cantu TG, Lipani JA (1995) "Gastrointestinal ulceration with NSAIDs." Am J Med, 99, p. 440-1
  9. Sacanella E, Munoz F, Cardellach F, Estruch R, Miro O, Urbanomarquez A (1996) "Massive haemorrhage due to colitis secondary to nonsteroidal anti-inflammatory drugs." Postgrad Med J, 72, p. 57-8
  10. Buchman AL, Schwartz MR (1996) "Colonic ulceration associated with the systemic use of nonsteroidal antiinflammatory medication." J Clin Gastroenterol, 22, p. 224-6
  11. Piper JM, Ray WA, Daugherty JR, Griffin MR (1991) "Corticosteroid use and peptic ulcer disease: role of nonsteroidal ani-inflammatory drugs." Ann Intern Med, 114, p. 735-40
Moderate

ketorolac moxifloxacin

Applies to: dexamethasone / ketorolac / moxifloxacin and dexamethasone / ketorolac / moxifloxacin

MONITOR: Coadministration with nonsteroidal anti-inflammatory drugs (NSAIDs) may potentiate the risk of central nervous system toxicity sometimes associated with fluoroquinolone use. The interaction has been reported most often with enoxacin. It may occur with other fluoroquinolones as well, but is poorly documented. The exact mechanism of interaction is unknown. Some investigators suggest that the piperazine ring of fluoroquinolones may inhibit the binding of gamma-aminobutyric acid (GABA) to brain receptors and that NSAIDs may synergistically add to this effect. Patients with a history of seizures may be at greater risk.

MANAGEMENT: Clinical monitoring for signs of CNS stimulation such as tremors, involuntary muscle movements, hallucinations, or seizures is recommended if fluoroquinolone antibiotics are prescribed in combination with NSAIDs.

References (14)
  1. Ball P (1986) "Ciprofloxacin: an overview of adverse experiences." J Antimicrob Chemother, 18, p. 187-93
  2. Hooper DC, Wolfson JS (1985) "The fluoroquinolones: pharmacology, clinical uses, and toxicities in humans." Antimicrob Agents Chemother, 28, p. 716-21
  3. (2002) "Product Information. Cipro (ciprofloxacin)." Bayer
  4. (2002) "Product Information. Penetrex (enoxacin)." Rhone Poulenc Rorer
  5. (2001) "Product Information. Floxin (ofloxacin)." Ortho McNeil Pharmaceutical
  6. Domagala JM (1994) "Structure-activity and structure-side-effect relationships for the quinolone antibacterials." J Antimicrob Chemother, 33, p. 685-706
  7. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  8. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  9. Davey PG (1988) "Overview of drug interactions with the quinolones." J Antimicrob Chemother, 22(suppl c), p. 97-107
  10. Ball P, Tillotson G (1996) "Tolerability of fluoroquinolone antibiotics: past, present and future." Drug Saf, 13, p. 343-8
  11. (2001) "Product Information. Avelox (moxifloxacin)." Bayer
  12. (2001) "Product Information. Tequin (gatifloxacin)." Bristol-Myers Squibb
  13. (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
  14. Segev S. Rehavi M, Rubinstein E (1988) "Quinolones, theophylline, and diclofenac interactions with the gamma-aminobutyric acid receptor." Antimicrob Agents Chemother, 32, p. 1624-6

Drug and food interactions

Moderate

leflunomide food

Applies to: leflunomide

GENERALLY AVOID: The consumption of alcohol during therapy with leflunomide may potentiate the risk of liver injury. Leflunomide has been associated with hepatotoxicity, including elevated liver transaminases, hepatitis, jaundice/cholestasis, hepatic failure, and acute hepatic necrosis,

MANAGEMENT: Patients should be advised to avoid excessive alcohol use during leflunomide treatment.

References (3)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. Cerner Multum, Inc. "Australian Product Information."
Moderate

ketorolac food

Applies to: dexamethasone / ketorolac / moxifloxacin

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References (1)
  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.