Skip to main content

Drug Interactions between colchicine and Sleep+Immune Health

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

No interactions were found between colchicine and Sleep+Immune Health. However, this does not necessarily mean no interactions exist. Always consult your healthcare provider.

colchicine

A total of 307 drugs are known to interact with colchicine.

Sleep+Immune Health

A total of 573 drugs are known to interact with Sleep+Immune Health.

Drug and food interactions

Major

colchicine food

Applies to: colchicine

GENERALLY AVOID: Coadministration with grapefruit juice may increase the serum concentrations of colchicine. Clinical toxicity including myopathy, neuropathy, multiorgan failure, and pancytopenia may occur. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism and P-glycoprotein efflux in the gut wall by certain compounds present in grapefruits. A published case report describes an eight-year-old patient with familial Mediterranean fever who developed acute clinical colchicine intoxication after ingesting approximately one liter of grapefruit juice per day for two months prior to hospital admission while being treated with colchicine 2 mg/day. Her condition progressed to circulatory shock and multiorgan failure, but she recovered with supportive therapy after 24 days in the hospital. In a study of 21 healthy volunteers, administration of 240 mL grapefruit juice twice a day for 4 days was found to have no significant effect on the pharmacokinetics of a single 0.6 mg dose of colchicine. However, significant interactions have been reported with other CYP450 3A4 inhibitors such as clarithromycin, diltiazem, erythromycin, ketoconazole, ritonavir, and verapamil.

MANAGEMENT: Patients treated with colchicine should be advised to avoid the consumption of grapefruit and grapefruit juice, and to contact their physician if they experience symptoms of colchicine toxicity such as abdominal pain, nausea, vomiting, diarrhea, fatigue, myalgia, asthenia, hyporeflexia, paresthesia, and numbness.

References (19)
  1. Pettinger WA (1975) "Clonidine, a new antihypertensive drug." N Engl J Med, 293, p. 1179-80
  2. Caraco Y, Putterman C, Rahamimov R, Ben-Chetrit E (1992) "Acute colchicine intoxication: possible role of erythromycin administration." J Rheumatol, 19, p. 494-6
  3. Schiff D, Drislane FW (1992) "Rapid-onset colchicine myoneuropathy." Arthritis Rheum, 35, p. 1535-6
  4. Putterman C, Ben-Chetrit E, Caraco Y, Levy M (1991) "Colchicine intoxication: clinical pharmacology, risk factors, features, and management." Semin Arthritis Rheum, 21, p. 143-55
  5. Boomershine KH (2002) "Colchicine-induced rhabdomyolysis." Ann Pharmacother, 36, p. 824-6
  6. (2003) "Severe colchicine-macrolide interactions." Prescrire Int, 12, p. 18-9
  7. Tateishi T, Soucek P, Caraco Y, Guengerich FP, Wood AJ (1996) "Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation." Biochem Pharmacol, 53, p. 111-6
  8. Dogukan A, Oymak FS, Taskapan H, Guven M, Tokgoz B, Utas C (2001) "Acute fatal colchicine intoxication in a patient on continuous ambulatory peritoneal dialysis (CAPD). Possible role of clarithromycin administration." Clin Nephrol, 55, p. 181-2
  9. Rollot F, Pajot O, Chauvelot-Moachon L, Nazal EM, Kelaidi C, Blanche P (2004) "Acute colchicine intoxication during clarithromycin administration." Ann Pharmacother, 38, p. 2074-7
  10. Wilbur K, Makowsky M (2004) "Colchicine myotoxicity: case reports and literature review." Pharmacotherapy, 24, p. 1784-92
  11. Hung IF, Wu AK, Cheng VC, et al. (2005) "Fatal interaction between clarithromycin and colchicine in patients with renal insufficiency: a retrospective study." Clin Infect Dis, 41, p. 291-300
  12. Cheng VC, Ho PL, Yuen KY (2005) "Two probable cases of serious drug interaction between clarithromycin and colchicine." South Med J, 98, p. 811-3
  13. Akdag I, Ersoy A, Kahvecioglu S, Gullulu M, Dilek K (2006) "Acute colchicine intoxication during clarithromycin administration in patients with chronic renal failure." J Nephrol, 19, p. 515-7
  14. van der Velden W, Huussen J, Ter Laak H, de Sevaux R (2008) "Colchicine-induced neuromyopathy in a patient with chronic renal failure: the role of clarithromycin." Neth J Med, 66, p. 204-6
  15. Goldbart A, Press J, Sofer S, Kapelushnik J (2000) "Near fatal acute colchicine intoxication in a child. A case report." Eur J Pediatr, 159, p. 895-7
  16. (2008) "Colchicine: serious interactions." Prescrire Int, 17, p. 151-3
  17. (2009) "Product Information. Colcrys (colchicine)." AR Scientific Inc
  18. Dahan A, Amidon GL (2009) "Grapefruit juice and its constitueants augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein." Pharm Res, 26, p. 883-92
  19. McKinnell J, Tayek JA (2009) "Short term treatment with clarithromycin resulting in colchicine-induced rhabdomyolysis." J Clin Rheumatol, 15, p. 303-5
Moderate

cholecalciferol food

Applies to: Sleep+Immune Health (ascorbic acid / cholecalciferol / elderberry / melatonin / zinc sulfate)

MONITOR: Additive effects and possible toxicity (e.g., hypercalcemia, hypercalciuria, and/or hyperphosphatemia) may occur when patients using vitamin D and/or vitamin D analogs ingest a diet high in vitamin D, calcium, and/or phosphorus. The biologically active forms of vitamin D stimulate intestinal absorption of calcium and phosphorus. This may be helpful in patients with hypocalcemia and/or hypophosphatemia. However, sudden increases in calcium or phosphorus consumption due to dietary changes could precipitate hypercalcemia and/or hyperphosphatemia. Patients with certain disease states, such as impaired renal function, may be more susceptible to toxic side effects like ectopic calcification. On the other hand, if dietary calcium is inadequate for the body's needs, the active form of vitamin D will stimulate osteoclasts to pull calcium from the bones. This may be detrimental in a patient with reduced bone density.

MANAGEMENT: Given the narrow therapeutic index of vitamin D and vitamin D analogs, the amounts of calcium, phosphorus, and vitamin D present in the patient's diet may need to be taken into consideration. Specific dietary guidance should be discussed with the patient and regular lab work should be monitored as indicated. Calcium, phosphorus, and vitamin D levels should be kept within the desired ranges, which may differ depending on the patient's condition. Patients should also be counseled on the signs and symptoms of hypervitaminosis D, hypercalcemia, and/or hyperphosphatemia.

References (10)
  1. (2023) "Product Information. Drisdol (ergocalciferol)." Validus Pharmaceuticals LLC
  2. (2024) "Product Information. Fultium-D3 (colecalciferol)." Internis Pharmaceuticals Ltd
  3. (2024) "Product Information. Ostelin Specialist Range Vitamin D (colecalciferol)." Sanofi-Aventis Healthcare Pty Ltd T/A Sanofi Consumer Healthcare
  4. (2021) "Product Information. Rocaltrol (calcitriol)." Atnahs Pharma UK Ltd
  5. (2019) "Product Information. Calcitriol (calcitriol)." Strides Pharma Inc.
  6. (2024) "Product Information. Calcitriol (GenRx) (calcitriol)." Apotex Pty Ltd
  7. (2022) "Product Information. Ergocalciferol (ergocalciferol)." RPH Pharmaceuticals AB
  8. (2020) "Product Information. Sandoz D (cholecalciferol)." Sandoz Canada Incorporated
  9. Fischer V, Haffner-Luntzer M, Prystaz K, et al. (2024) Calcium and vitamin-D deficiency marginally impairs fracture healing but aggravates posttraumatic bone loss in osteoporotic mice. https://www.nature.com/articles/s41598-017-07511-2
  10. National Institutes of Health Office of Dietary Supplements (2024) Vitamin D https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/#h37
Moderate

melatonin food

Applies to: Sleep+Immune Health (ascorbic acid / cholecalciferol / elderberry / melatonin / zinc sulfate)

MONITOR: Oral caffeine may significantly increase the bioavailability of melatonin. The proposed mechanism is inhibition of CYP450 1A2 first-pass metabolism. After administration of melatonin 6 mg and caffeine 200 mg orally (approximately equivalent to 1 large cup of coffee) to 12 healthy subjects, the mean peak plasma concentration (Cmax) of melatonin increased by 137% and the area under the concentration-time curve (AUC) increased by 120%. The metabolic inhibition was greater in nonsmokers (n=6) than in smokers (n=6). The greatest effect was seen in subjects with the *1F/*1F genotype (n=7), whose melatonin Cmax increased by 202%. The half-life did not change significantly. The clinical significance of this interaction is unknown.

According to some authorities, alcohol may reduce the effect of melatonin on sleep. The mechanism of this interaction is not fully understood.

In addition, CYP450 1A2 inducers like cigarette smoking may reduce exogenous melatonin plasma levels. In a small clinical trial (n=8), habitual smokers had their melatonin plasma levels measured two times, each after a single oral dose of 25 mg of melatonin. They had smoked prior to the first measurement but had not smoked for 7 days prior to the second. Cigarette smoking significantly reduced melatonin plasma exposure (AUC) as compared to melatonin levels after 7 days of smoking abstinence (7.34 +/- 1.85 versus 21.07 +/- 7.28 nmol/L*h, respectively).

MANAGEMENT: Caution and monitoring are recommended if melatonin is used with inhibitors of CYP450 1A2 like caffeine or inducers of CYP450 1A2 like cigarette smoking. Consumption of alcohol should be avoided when taking melatonin.

References (3)
  1. Hartter S, Nordmark A, Rose DM, Bertilsson L, Tybring G, Laine K (2003) "Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity." Br J Clin Pharmacol, 56, p. 679-682
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Ursing C, Bahr CV, Brismar K, Rojdmark S (2005) "Influence of cigarette smoking on melatonin levels in man" Eur J Clin Pharmacol, 61, p. 197-201

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.