Skip to main content

Drug Interactions between cobicistat / darunavir / emtricitabine / tenofovir alafenamide and pseudoephedrine / terfenadine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

terfenadine darunavir

Applies to: pseudoephedrine / terfenadine and cobicistat / darunavir / emtricitabine / tenofovir alafenamide

CONTRAINDICATED: Coadministration with protease inhibitors (PIs), particularly ritonavir, may significantly increase the plasma concentrations of astemizole and terfenadine. The mechanism is PI inhibition of CYP450 3A4, the isoenzyme responsible for the metabolic clearance of both astemizole and terfenadine. Although the interaction has not been specifically studied with any of the available PIs, high plasma levels of astemizole and terfenadine (e.g., due to overdose or interaction with other potent 3A4 inhibitors such as macrolide antibiotics and azole antifungal agents) have been associated with prolongation of the QT interval on the ECG; ventricular arrhythmias including ventricular tachycardia, ventricular fibrillation, and torsade de pointes; cardiac arrest; and sudden death.

MANAGEMENT: Given the potential for serious and life-threatening adverse cardiac events associated with increased plasma levels of astemizole and terfenadine, use of these agents in patients treated with protease inhibitors is considered contraindicated. Loratadine, cetirizine, or fexofenadine may be safer alternatives during therapy with PIs.

References

  1. Eller MG, Okerholm RA (1991) "Pharmacokinetic interaction between terfenadine and ketoconazole." Clin Pharmacol Ther, 49, p. 130
  2. Honig PK, Woosley RL, Zamani K, Conner DP, Cantilena LR Jr (1992) "Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin." Clin Pharmacol Ther, 52, p. 231-8
  3. Zimmermann M, Duruz H, Guinand O, et al. (1992) "Torsades de Pointes after treatment with terfenadine and ketoconazole." Eur Heart J, 13, p. 1002-3
  4. Mathews DR, McNutt B, Okerholm R, et al. (1991) "Torsades de pointes occurring in association with terfenadine use." JAMA, 266, p. 2375-6
  5. Honig PK, Wortham DC, Zamani K, et al. (1993) "Terfenadine-ketoconazole interaction: pharmacokinetic and electrocardiographic consequences." JAMA, 269, p. 1513-8
  6. Pohjola-Sintonen S, Viitasalo M, Toivonene L, Neuvonen P (1993) "Torsades de pointes after terfenadine-itraconazole interaction." BMJ, 306, p. 186
  7. Craft TM (1986) "Torsade de pointes after astemizole overdose." Br Med J, 292, p. 660
  8. Snook J, Boothman-Burrell D, Watkins J, Colin-Jones D (1988) "Torsade de pointes ventricular tachycardia associated with astemizole overdose." Br J Clin Pract, 42, p. 257-9
  9. Saviuc P, Danel V, Dixmerias F (1993) "Prolonged QT interval and torsade de pointes following astemizole overdose." J Toxicol Clin Toxicol, 31, p. 121-5
  10. Hasan RA, Zureikat GY, Nolan BM (1993) "Torsade de pointes associated with astemizole overdose treated with magnesium sulfate." Pediatr Emerg Care, 9, p. 23-5
  11. Crane JK, Shih HT (1993) "Syncope and cardiac arrhythmia due to an interaction between itraconazole and terfenadine." Am J Med, 95, p. 445-6
  12. Biglin KE, Faraon MS, Constance TD, Lieh-Lai M (1994) "Drug-induced torsades de pointes: a possible interaction of terfenadine and erythromycin." Ann Pharmacother, 28, p. 282
  13. Honig PK, Wortham DC, Hull R, Zamani K, Smith JE, Cantilena LR (1993) "Itraconazole affects single-dose terfenadine pharmacokinetics and cardiac repolarization pharmacodynamics." J Clin Pharmacol, 33, p. 1201-6
  14. Rao KA, Adlakha A, Vermaansil B, Meloy TD, Stanton MS (1994) "Torsades de pointes ventricular tachycardia associated with overdose of astemizole." Mayo Clin Proc, 69, p. 589-93
  15. Kivisto KT, Neuvonen PJ, Klotz U (1994) "Inhibition of terfenadine metabolism - pharmacokinetic and pharmacodynamic consequences." Clin Pharmacokinet, 27, p. 1-5
  16. Smith SJ (1994) "Cardiovascular toxicity of antihistamines." Otolaryngol Head Neck Surg, 111 Suppl, p. 348-54
  17. Paris DG, Parente TF, Bruschetta HR, Guzman E, Niarchos AP (1994) "Torsades-de-pointes induced by erythromycin and terfenadine." Am J Emerg Med, 12, p. 636-8
  18. (2001) "Product Information. Invirase (saquinavir)." Roche Laboratories
  19. (2001) "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical
  20. (2001) "Product Information. Crixivan (indinavir)." Merck & Co., Inc
  21. Ng PW, Chan WK, Chan TYK (1996) "Torsade de pointes during the concomitant use of terfenadine and cimetidine." Aust N Z J Med, 26, p. 120-1
  22. Heidemann SM, Sarnaik AP (1996) "Arrhythmias after astemizole overdose." Pediatr Emerg Care, 12, p. 102-4
  23. Woosley RL (1996) "Cardiac actions of antihistamines." Annu Rev Pharmacol Toxicol, 36, p. 233-52
  24. Hey JA, Delprado M, Egan RW, Kreutner W (1996) "Terfenadine, astemizole, and ebastine produce QTc interval prolongation in an experimental model predictive of adverse clinical ECG effects." Ann Allergy Asthma Immunol, 76, p. 476
  25. Vorperian VR, Zhou ZF, Mohammad S, Hoon TJ, Studenik C, January CT (1996) "Torsade de pointes with an antihistamine metabolite: potassium channel blockade with desmethylastemizole." J Am Coll Cardiol, 28, p. 1556-61
  26. Tsai WC, Tsai LM, Chen JH (1997) "Combined use of astemizole and ketoconazole resulting in torsade de pointes." J Formos Med Assoc, 96, p. 144-6
  27. (2001) "Product Information. Viracept (nelfinavir)." Agouron Pharma Inc
  28. Ament PW, Paterson A (1997) "Drug interactions with the nonsedating antihistamines." Am Fam Physician, 56, p. 223
  29. Jurima-Romet M, Crawford K, Cyr T, Inaba T (1994) "Terfenadine metabolism in human liver. In vitro inhibition by macrolide antibiotics and azole antifungals." Drug Metab Dispos, 22, p. 849-57
  30. Rankin AC (1997) "Non-sedating antihistamines and cardiac arrhythmia." Lancet, 350, p. 1115-6
  31. Gonzalez MA, Estes KS (1998) "Pharmacokinetic overview of oral second-generation H-1 antihistamines." Int J Clin Pharmacol Ther, 36, p. 292-300
  32. (2001) "Product Information. Agenerase (amprenavir)." Glaxo Wellcome
  33. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  34. (2001) "Product Information. Fortovase (saquinavir)." Roche Laboratories
  35. Mangum EM, Graham KK (2001) "Lopinavir-Ritonavir: a new protease inhibitor." Pharmacotherapy, 21, p. 1352-63
  36. DuBuske LM (1999) "Second-generation antihistamines: the risk of ventricular arrhythmias." Clin Ther, 21, p. 281-95
  37. (2003) "Product Information. Reyataz (atazanavir)." Bristol-Myers Squibb
  38. (2003) "Product Information. Lexiva (fosamprenavir)." GlaxoSmithKline
  39. (2006) "Product Information. Prezista (darunavir)." Ortho Biotech Inc
View all 39 references

Switch to consumer interaction data

Moderate

tenofovir darunavir

Applies to: cobicistat / darunavir / emtricitabine / tenofovir alafenamide and cobicistat / darunavir / emtricitabine / tenofovir alafenamide

MONITOR: Coadministration of tenofovir and darunavir-ritonavir or darunavir-cobicistat may result in increased plasma concentrations of tenofovir and darunavir. Increased tenofovir plasma concentration may increase the risk for tenofovir-related renal adverse effects, including renal impairment, renal failure, elevated creatinine, and Fanconi syndrome. The mechanism of this interaction is unknown; however, increased tenofovir concentrations may be related to inhibition of P-glycoprotein by darunavir, cobicistat, or ritonavir in the renal tubules. Cobicistat may decrease estimated creatinine clearance via inhibition of tubular secretion of creatinine; however, renal glomerular function does not appear to be affected. In 12 study subjects, administration of darunavir-ritonavir (300 mg-100 mg twice daily) with tenofovir (300 mg once daily) increased the systemic exposure (AUC) and trough plasma concentration (Cmin) of darunavir by 21% and 24%, respectively, compared to administration without tenofovir. Tenofovir AUC and Cmin also increased by 22% and 37%, respectively, in the presence of darunavir-ritonavir. Data are lacking to determine whether concomitant use of tenofovir with cobicistat-containing regimens is associated with a greater risk of renal complications compared with regimens that do not include cobicistat.

MANAGEMENT: Caution and close monitoring of renal function is recommended if darunavir-ritonavir or darunavir-cobicistat is to be used in combination with tenofovir, particularly in patients with risk factors for renal impairment. No dose adjustments appear necessary during coadministration of darunavir-ritonavir with tenofovir. However, initiation of cobicistat or cobicistat-containing regimens is not recommended in patients with CrCl less than 70 mL/min if any coadministered medicine requires dose adjustment based on renal function (including tenofovir) or is nephrotoxic.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. (2006) "Product Information. Prezista (darunavir)." Ortho Biotech Inc
  3. Cerner Multum, Inc. "Australian Product Information."
  4. (2014) "Product Information. Prezcobix (cobicistat-darunavir)." Janssen Pharmaceuticals
View all 4 references

Switch to consumer interaction data

Moderate

tenofovir cobicistat

Applies to: cobicistat / darunavir / emtricitabine / tenofovir alafenamide and cobicistat / darunavir / emtricitabine / tenofovir alafenamide

MONITOR: Concomitant use of tenofovir with cobicistat may increase the risk for tenofovir-related renal adverse effects, including renal impairment, renal failure, elevated creatinine, and Fanconi syndrome. The mechanism of this interaction has not been described. Cobicistat may decrease estimated creatinine clearance via inhibition of tubular secretion of creatinine; however, renal glomerular function does not appear to be affected. When given concomitantly with cobicistat, the systemic exposure (AUC) and trough plasma concentrations (Cmin) of tenofovir was also increased by 23% and 55%, respectively. However, data are lacking to determine whether concomitant use of tenofovir with cobicistat-containing regimens is associated with a greater risk of renal complications compared with regimens that do not include cobicistat.

MANAGEMENT: Initiation of cobicistat or cobicistat-containing regimens is not recommended in patients with CrCl less than 70 mL/min if any coadministered medicine requires dose adjustment based on renal function (including tenofovir), or is nephrotoxic. If concomitant therapy is necessary, monitoring of renal function is recommended, particularly in patients with risk factors for renal impairment.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."
  4. (2014) "Product Information. Tybost (cobicistat)." Gilead Sciences
View all 4 references

Switch to consumer interaction data

Moderate

emtricitabine cobicistat

Applies to: cobicistat / darunavir / emtricitabine / tenofovir alafenamide and cobicistat / darunavir / emtricitabine / tenofovir alafenamide

GENERALLY AVOID: Cobicistat may increase the plasma concentrations of antiretroviral agents. The plasma concentrations of cobicistat may also be increased or reduced in the presence of antiretroviral agents. The proposed mechanism is cobicistat inhibition of the CYP450 3A4 isoenzyme, of which antiretroviral agents may be substrates, and the inhibition or induction of CYP450 3A4 by concomitant antiretroviral medications. Cobicistat is a mechanism-based inhibitor and substrate of CYP450 3A4 with no antiretroviral activity of its own. Rather, it is indicated in its capacity as a pharmacokinetic booster of CYP450 3A4 to increase the systemic exposure of some antiretroviral medications such as atazanavir, darunavir, and elvitegravir, which are substrates of this isoenzyme. Concomitant use of other antiretroviral agents with cobicistat may also increase the plasma levels and risk of side effects associated with these medicines. In contrast, concomitant use of cobicistat-boosted atazanavir or darunavir with CYP450 3A4 inducers nevirapine, etravirine, or efavirenz may reduce the plasma concentrations of cobicistat, darunavir, and atazanavir, leading to a potential loss of therapeutic effect and development of resistance to darunavir and atazanavir. Pharmacokinetic data are not available.

MANAGEMENT: Cobicistat is not intended for use with more than one antiretroviral medication that requires pharmacokinetic enhancement, such as two protease inhibitors or elvitegravir in combination with a protease inhibitor. In addition, cobicistat should not be used concomitantly with ritonavir due to their similar effects on CYP450 3A4. According to some authorities, use of the antiretroviral combinations of atazanavir-cobicistat or darunavir-cobicistat concomitantly with the CYP450 3A4 inducers efavirenz, etravirine, or nevirapine is also not recommended. Other authorities consider the administration of atazanavir-cobicistat with efavirenz or nevirapine to be contraindicated. Since dosing recommendations have only been established for a number of antiretroviral medications, product labeling and current antiretroviral treatment guidelines should be consulted.

References

  1. (2001) "Product Information. Viramune (nevirapine)." Boehringer-Ingelheim
  2. (2001) "Product Information. Sustiva (efavirenz)." DuPont Pharmaceuticals
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. (2006) "Product Information. Prezista (darunavir)." Ortho Biotech Inc
  5. (2008) "Product Information. Intelence (etravirine)." Ortho Biotech Inc
  6. Cerner Multum, Inc. "Australian Product Information."
  7. (2012) "Product Information. Stribild (cobicistat/elvitegravir/emtricitabine/tenofov)." Gilead Sciences
  8. (2014) "Product Information. Tybost (cobicistat)." Gilead Sciences
  9. (2014) "Product Information. Prezcobix (cobicistat-darunavir)." Janssen Pharmaceuticals
  10. (2015) "Product Information. Evotaz (atazanavir-cobicistat)." Bristol-Myers Squibb
View all 10 references

Switch to consumer interaction data

Drug and food interactions

Major

terfenadine food

Applies to: pseudoephedrine / terfenadine

CONTRAINDICATED: The consumption of grapefruit juice has been associated with significantly increased plasma concentrations of terfenadine. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. Terfenadine in high serum levels has been associated with prolongation of the QT interval and development of torsade de pointes, a potentially fatal ventricular arrhythmia.

MANAGEMENT: Due to the risk of cardiotoxicity, patients receiving the drug should be advised to avoid consumption of grapefruit products. Loratadine, cetirizine, and fexofenadine may be safer alternatives in patients who may have trouble adhering to the dietary restriction.

References

  1. Honig PK, Woosley RL, Zamani K, Conner DP, Cantilena LR Jr (1992) "Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin." Clin Pharmacol Ther, 52, p. 231-8
  2. Zimmermann M, Duruz H, Guinand O, et al. (1992) "Torsades de Pointes after treatment with terfenadine and ketoconazole." Eur Heart J, 13, p. 1002-3
  3. Mathews DR, McNutt B, Okerholm R, et al. (1991) "Torsades de pointes occurring in association with terfenadine use." JAMA, 266, p. 2375-6
  4. Monahan BP, Ferguson CL, Killeavy ES, et al. (1990) "Torsades de pointes occurring in association with terfenadine use." JAMA, 264, p. 2788-90
  5. Honig PK, Wortham DC, Zamani K, et al. (1993) "Terfenadine-ketoconazole interaction: pharmacokinetic and electrocardiographic consequences." JAMA, 269, p. 1513-8
  6. Pohjola-Sintonen S, Viitasalo M, Toivonene L, Neuvonen P (1993) "Torsades de pointes after terfenadine-itraconazole interaction." BMJ, 306, p. 186
  7. Cortese LM, Bjornson DC (1992) "Potential interaction between terfenadine and macrolide antibiotics." Clin Pharm, 11, p. 675
  8. Paris DG, Parente TF, Bruschetta HR, Guzman E, Niarchos AP (1994) "Torsades-de-pointes induced by erythromycin and terfenadine." Am J Emerg Med, 12, p. 636-8
  9. Zechnich AD, Haxby DG (1996) "Drug interactions associated with terfenadine and related nonsedating antihistamines." West J Med, 164, p. 68-9
  10. Honig PK, Wortham DC, Lazarev A, Cantilena LR (1996) "Grapefruit juice alters the systemic bioavailability and cardiac repolarization of terfenadine in poor metabolizers of terfenadine." J Clin Pharmacol, 36, p. 345-51
  11. Woosley RL (1996) "Cardiac actions of antihistamines." Annu Rev Pharmacol Toxicol, 36, p. 233-52
  12. Benton RE, Honig PK, Zamani K, Cantilena LR, Woosley RL (1996) "Grapefruit juice alters terfenadine pharmacokinetics resulting in prolongation of repolarization on the electrocardiogram." Clin Pharmacol Ther, 59, p. 383-8
  13. Hsieh MH, Chen SA, Chiang CE, et al. (1996) "Drug-induced torsades de pointes in one patient with congenital long QT syndrome." Int J Cardiol, 54, p. 85-8
  14. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  15. Rau SE, Bend JR, Arnold JMO, Tran LT, Spence JD, Bailey DG (1997) "Grapefruit juice terfenadine single-dose interaction: Magnitude, mechanism, and relevance." Clin Pharmacol Ther, 61, p. 401-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
View all 17 references

Switch to consumer interaction data

Moderate

darunavir food

Applies to: cobicistat / darunavir / emtricitabine / tenofovir alafenamide

ADJUST DOSING INTERVAL: Food enhances the absorption and oral bioavailability of darunavir administered in combination with low-dose ritonavir. The mechanism is unknown. When administered with food, the peak plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) of darunavir were approximately 30% higher than when administered in the fasting state. Darunavir exposure was similar for the range of meals studied. The total caloric content of the various meals evaluated ranged from 240 Kcal (12 grams fat) to 928 Kcal (56 grams fat).

MANAGEMENT: To ensure maximal oral absorption, darunavir coadministered with ritonavir should be taken with food. The type of food is not important.

References

  1. (2006) "Product Information. Prezista (darunavir)." Ortho Biotech Inc

Switch to consumer interaction data

Moderate

pseudoephedrine food

Applies to: pseudoephedrine / terfenadine

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Minor

tenofovir food

Applies to: cobicistat / darunavir / emtricitabine / tenofovir alafenamide

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.