Skip to main content

Drug Interactions between cisatracurium and hydrochlorothiazide / spironolactone

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

hydroCHLOROthiazide cisatracurium

Applies to: hydrochlorothiazide / spironolactone and cisatracurium

MONITOR: Diuretics may induce hypokalemia and prolong the neuromuscular blocking effects of nondepolarizing muscle relaxants.

MANAGEMENT: Close monitoring for prolonged neuromuscular blockade, potassium replacement when indicated, and neuromuscular blocker dose adjustment is recommended.

References (4)
  1. Miller RD, Roderick LL (1978) "Diuretic-induced hypokalemia, pancuronium neuromuscular blockade and its antagonism by neostigmine." Br J Anaesth, 50, p. 541-4
  2. (2002) "Product Information. HydroDIURIL (hydrochlorothiazide)." Merck & Co., Inc
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. Agencia Española de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de información online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html

Drug and food/lifestyle interactions

Moderate

hydroCHLOROthiazide food/lifestyle

Applies to: hydrochlorothiazide / spironolactone

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients should also avoid driving or operating hazardous machinery until they know how the medications affect them.

References (10)
  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
  9. (2023) "Product Information. Buprenorphine (buprenorphine)." G.L. Pharma UK Ltd
  10. (2023) "Product Information. Temgesic (buprenorphine)." Reckitt Benckiser Pty Ltd
Moderate

spironolactone food/lifestyle

Applies to: hydrochlorothiazide / spironolactone

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients should also avoid driving or operating hazardous machinery until they know how the medications affect them.

References (10)
  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
  9. (2023) "Product Information. Buprenorphine (buprenorphine)." G.L. Pharma UK Ltd
  10. (2023) "Product Information. Temgesic (buprenorphine)." Reckitt Benckiser Pty Ltd

Disease interactions

Major

spironolactone Acidosis

Applies to: Acidosis

Acidosis alters the ratio of extracellular to intracellular potassium and may commonly lead to rapid increases in serum potassium levels. Conversely, high serum potassium concentrations may potentiate acidosis. Because of their hyperkalemic effects, therapy with potassium-sparing diuretics should be avoided in patients with metabolic or respiratory acidosis. These agents should be used cautiously in patients in whom acidosis may occur, such as patients with cardiopulmonary disease, severe respiratory disease, or poorly controlled diabetes. Acid-base balance and serum potassium levels should be monitored at regular intervals.

Major

hydroCHLOROthiazide Anuria

Applies to: Anuria

The use of thiazide diuretics is contraindicated in patients with anuria.

Major

cisatracurium Burns - External

Applies to: Burns - External

Patients with burns may develop resistance to non-depolarizing neuromuscular blocking agents. These patients may experience a shorter duration of action and/or require higher dosages of the drugs. The extent of altered response depends on the duration since and the size of the burn.

Major

hydroCHLOROthiazide Dehydration

Applies to: Dehydration

The use of thiazide diuretics is commonly associated with loss of electrolytes, most significantly potassium but also sodium, chloride, bicarbonate, and magnesium. The loss of other electrolytes such as phosphate, bromide and iodide is usually slight. Potassium and magnesium depletion may lead to cardiac arrhythmias and cardiac arrest. Other electrolyte-related complications include metabolic alkalosis and hyponatremia, which are rarely life-threatening. Therapy with thiazide diuretics should be administered cautiously in patients with or predisposed to fluid and electrolyte depletion, including patients with primary or secondary aldosteronism (may have low potassium levels); those with severe or prolonged diarrhea or vomiting; and those with poor nutritional status. Fluid and electrolyte abnormalities should be corrected prior to initiating therapy, and blood pressure as well as serum electrolyte concentrations monitored periodically and maintained at normal ranges during therapy. Patients should be advised to immediately report signs and symptoms of fluid or electrolyte imbalance, including dry mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pains or cramps, muscular fatigue, hypotension, oliguria, tachycardia, arrhythmia, or gastrointestinal disturbances such as nausea and vomiting. Digitalized patients and patients with a history of ventricular arrhythmias should be monitored carefully, since development of hypokalemia may be particularly dangerous in these patients. The risk of hypokalemia may be minimized by slow diuresis, a lower thiazide dosage, potassium supplementation, or combined use with a potassium-sparing diuretic.

Major

spironolactone Diabetes Mellitus

Applies to: Diabetes Mellitus

Potassium-sparing diuretics can cause hyperkalemia, which may result in life-threatening cardiac arrhythmias. Patients with diabetes mellitus, with or without nephropathy, may be particularly susceptible to the hyperkalemic effect of these drugs due to a defect in the renin-angiotensin-aldosterone axis. Therapy with potassium-sparing diuretics should be avoided, if possible, in patients with diabetes, especially uncontrolled or insulin-dependent diabetes mellitus. If these drugs are used, serum potassium levels and renal function should be monitored at regular intervals. Determination of serum electrolytes is especially important during initiation of therapy, after a dosage adjustment, and during illness that could alter renal function.

Major

spironolactone Diabetes Mellitus

Applies to: Diabetes Mellitus

Acidosis alters the ratio of extracellular to intracellular potassium and may commonly lead to rapid increases in serum potassium levels. Conversely, high serum potassium concentrations may potentiate acidosis. Because of their hyperkalemic effects, therapy with potassium-sparing diuretics should be avoided in patients with metabolic or respiratory acidosis. These agents should be used cautiously in patients in whom acidosis may occur, such as patients with cardiopulmonary disease, severe respiratory disease, or poorly controlled diabetes. Acid-base balance and serum potassium levels should be monitored at regular intervals.

Major

hydroCHLOROthiazide Diarrhea

Applies to: Diarrhea

The use of thiazide diuretics is commonly associated with loss of electrolytes, most significantly potassium but also sodium, chloride, bicarbonate, and magnesium. The loss of other electrolytes such as phosphate, bromide and iodide is usually slight. Potassium and magnesium depletion may lead to cardiac arrhythmias and cardiac arrest. Other electrolyte-related complications include metabolic alkalosis and hyponatremia, which are rarely life-threatening. Therapy with thiazide diuretics should be administered cautiously in patients with or predisposed to fluid and electrolyte depletion, including patients with primary or secondary aldosteronism (may have low potassium levels); those with severe or prolonged diarrhea or vomiting; and those with poor nutritional status. Fluid and electrolyte abnormalities should be corrected prior to initiating therapy, and blood pressure as well as serum electrolyte concentrations monitored periodically and maintained at normal ranges during therapy. Patients should be advised to immediately report signs and symptoms of fluid or electrolyte imbalance, including dry mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pains or cramps, muscular fatigue, hypotension, oliguria, tachycardia, arrhythmia, or gastrointestinal disturbances such as nausea and vomiting. Digitalized patients and patients with a history of ventricular arrhythmias should be monitored carefully, since development of hypokalemia may be particularly dangerous in these patients. The risk of hypokalemia may be minimized by slow diuresis, a lower thiazide dosage, potassium supplementation, or combined use with a potassium-sparing diuretic.

Major

spironolactone Electrolyte Abnormalities

Applies to: Electrolyte Abnormalities

All diuretics may cause or aggravate fluid and electrolyte disturbances. Potassium-sparing diuretics may cause hyperkalemia and, infrequently, hyponatremia. The latter generally occurs when these agents are combined with other diuretics such as thiazides or used in markedly edematous patients with restricted sodium intake. Therapy with potassium-sparing diuretics should be administered cautiously in patients with or predisposed to electrolyte abnormalities. Electrolyte imbalances should be corrected prior to initiating therapy, and serum electrolyte concentrations should be monitored periodically and maintained at normal ranges during therapy. Determination of serum electrolytes is especially important during initiation of therapy, after a dosage adjustment, and during illness that could alter renal function.

Major

hydroCHLOROthiazide Electrolyte Abnormalities

Applies to: Electrolyte Abnormalities

The use of thiazide diuretics is commonly associated with loss of electrolytes, most significantly potassium but also sodium, chloride, bicarbonate, and magnesium. The loss of other electrolytes such as phosphate, bromide and iodide is usually slight. Potassium and magnesium depletion may lead to cardiac arrhythmias and cardiac arrest. Other electrolyte-related complications include metabolic alkalosis and hyponatremia, which are rarely life-threatening. Therapy with thiazide diuretics should be administered cautiously in patients with or predisposed to fluid and electrolyte depletion, including patients with primary or secondary aldosteronism (may have low potassium levels); those with severe or prolonged diarrhea or vomiting; and those with poor nutritional status. Fluid and electrolyte abnormalities should be corrected prior to initiating therapy, and blood pressure as well as serum electrolyte concentrations monitored periodically and maintained at normal ranges during therapy. Patients should be advised to immediately report signs and symptoms of fluid or electrolyte imbalance, including dry mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pains or cramps, muscular fatigue, hypotension, oliguria, tachycardia, arrhythmia, or gastrointestinal disturbances such as nausea and vomiting. Digitalized patients and patients with a history of ventricular arrhythmias should be monitored carefully, since development of hypokalemia may be particularly dangerous in these patients. The risk of hypokalemia may be minimized by slow diuresis, a lower thiazide dosage, potassium supplementation, or combined use with a potassium-sparing diuretic.

Major

hydroCHLOROthiazide Hyperaldosteronism

Applies to: Hyperaldosteronism

The use of thiazide diuretics is commonly associated with loss of electrolytes, most significantly potassium but also sodium, chloride, bicarbonate, and magnesium. The loss of other electrolytes such as phosphate, bromide and iodide is usually slight. Potassium and magnesium depletion may lead to cardiac arrhythmias and cardiac arrest. Other electrolyte-related complications include metabolic alkalosis and hyponatremia, which are rarely life-threatening. Therapy with thiazide diuretics should be administered cautiously in patients with or predisposed to fluid and electrolyte depletion, including patients with primary or secondary aldosteronism (may have low potassium levels); those with severe or prolonged diarrhea or vomiting; and those with poor nutritional status. Fluid and electrolyte abnormalities should be corrected prior to initiating therapy, and blood pressure as well as serum electrolyte concentrations monitored periodically and maintained at normal ranges during therapy. Patients should be advised to immediately report signs and symptoms of fluid or electrolyte imbalance, including dry mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pains or cramps, muscular fatigue, hypotension, oliguria, tachycardia, arrhythmia, or gastrointestinal disturbances such as nausea and vomiting. Digitalized patients and patients with a history of ventricular arrhythmias should be monitored carefully, since development of hypokalemia may be particularly dangerous in these patients. The risk of hypokalemia may be minimized by slow diuresis, a lower thiazide dosage, potassium supplementation, or combined use with a potassium-sparing diuretic.

Major

spironolactone Hyperkalemia

Applies to: Hyperkalemia

The use of potassium-sparing diuretics is contraindicated in the presence of elevated serum potassium concentrations (> 5.5 mEq/L). Potassium-sparing diuretics can cause hyperkalemia, which may result in life-threatening cardiac arrhythmias. Careful monitoring of serum potassium levels is necessary in all patients treated with potassium-sparing diuretics, especially during initiation of therapy, after dosage adjustment, and during illness that could alter renal function. The diuretic should be withdrawn immediately if hyperkalemia develops, and measures should be initiated to lower serum potassium if it exceeds 6.5 mEq/L. The combined use of a potassium-sparing diuretic with a kaliuretic diuretic (e.g., thiazides) may decrease the risk of hyperkalemia.

Major

hydroCHLOROthiazide Hypokalemia

Applies to: Hypokalemia

The use of thiazide diuretics is commonly associated with loss of electrolytes, most significantly potassium but also sodium, chloride, bicarbonate, and magnesium. The loss of other electrolytes such as phosphate, bromide and iodide is usually slight. Potassium and magnesium depletion may lead to cardiac arrhythmias and cardiac arrest. Other electrolyte-related complications include metabolic alkalosis and hyponatremia, which are rarely life-threatening. Therapy with thiazide diuretics should be administered cautiously in patients with or predisposed to fluid and electrolyte depletion, including patients with primary or secondary aldosteronism (may have low potassium levels); those with severe or prolonged diarrhea or vomiting; and those with poor nutritional status. Fluid and electrolyte abnormalities should be corrected prior to initiating therapy, and blood pressure as well as serum electrolyte concentrations monitored periodically and maintained at normal ranges during therapy. Patients should be advised to immediately report signs and symptoms of fluid or electrolyte imbalance, including dry mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pains or cramps, muscular fatigue, hypotension, oliguria, tachycardia, arrhythmia, or gastrointestinal disturbances such as nausea and vomiting. Digitalized patients and patients with a history of ventricular arrhythmias should be monitored carefully, since development of hypokalemia may be particularly dangerous in these patients. The risk of hypokalemia may be minimized by slow diuresis, a lower thiazide dosage, potassium supplementation, or combined use with a potassium-sparing diuretic.

Major

spironolactone Hyponatremia

Applies to: Hyponatremia

All diuretics may cause or aggravate fluid and electrolyte disturbances. Potassium-sparing diuretics may cause hyperkalemia and, infrequently, hyponatremia. The latter generally occurs when these agents are combined with other diuretics such as thiazides or used in markedly edematous patients with restricted sodium intake. Therapy with potassium-sparing diuretics should be administered cautiously in patients with or predisposed to electrolyte abnormalities. Electrolyte imbalances should be corrected prior to initiating therapy, and serum electrolyte concentrations should be monitored periodically and maintained at normal ranges during therapy. Determination of serum electrolytes is especially important during initiation of therapy, after a dosage adjustment, and during illness that could alter renal function.

Major

hydroCHLOROthiazide Hyponatremia

Applies to: Hyponatremia

The use of thiazide diuretics is commonly associated with loss of electrolytes, most significantly potassium but also sodium, chloride, bicarbonate, and magnesium. The loss of other electrolytes such as phosphate, bromide and iodide is usually slight. Potassium and magnesium depletion may lead to cardiac arrhythmias and cardiac arrest. Other electrolyte-related complications include metabolic alkalosis and hyponatremia, which are rarely life-threatening. Therapy with thiazide diuretics should be administered cautiously in patients with or predisposed to fluid and electrolyte depletion, including patients with primary or secondary aldosteronism (may have low potassium levels); those with severe or prolonged diarrhea or vomiting; and those with poor nutritional status. Fluid and electrolyte abnormalities should be corrected prior to initiating therapy, and blood pressure as well as serum electrolyte concentrations monitored periodically and maintained at normal ranges during therapy. Patients should be advised to immediately report signs and symptoms of fluid or electrolyte imbalance, including dry mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pains or cramps, muscular fatigue, hypotension, oliguria, tachycardia, arrhythmia, or gastrointestinal disturbances such as nausea and vomiting. Digitalized patients and patients with a history of ventricular arrhythmias should be monitored carefully, since development of hypokalemia may be particularly dangerous in these patients. The risk of hypokalemia may be minimized by slow diuresis, a lower thiazide dosage, potassium supplementation, or combined use with a potassium-sparing diuretic.

Major

hydroCHLOROthiazide Liver Disease

Applies to: Liver Disease

Patients with severe liver disease or cirrhosis are very susceptible to thiazide-induced hypokalemic hypochloremic alkalosis. Blood ammonia concentrations may be further increased in patients with previously elevated concentrations. Hepatic encephalopathy and death have occurred secondary to the electrolyte alterations accompanying diuretic use. Therapy with thiazide diuretics should be administered cautiously in patients with impaired hepatic function or progressive liver disease, and discontinued promptly if signs of impending hepatic coma appear (e.g., tremors, confusion, and increased jaundice).

Major

hydroCHLOROthiazide Lupus Erythematosus

Applies to: Lupus Erythematosus

The use of thiazide diuretics has been reported to possibly exacerbate or activate systemic lupus erythematosus. Reported cases have generally been associated with chlorothiazide and hydrochlorothiazide. Therapy with thiazide diuretics should be administered cautiously in patients with a history or risk of SLE.

Major

hydroCHLOROthiazide Magnesium Imbalance

Applies to: Magnesium Imbalance

The use of thiazide diuretics is commonly associated with loss of electrolytes, most significantly potassium but also sodium, chloride, bicarbonate, and magnesium. The loss of other electrolytes such as phosphate, bromide and iodide is usually slight. Potassium and magnesium depletion may lead to cardiac arrhythmias and cardiac arrest. Other electrolyte-related complications include metabolic alkalosis and hyponatremia, which are rarely life-threatening. Therapy with thiazide diuretics should be administered cautiously in patients with or predisposed to fluid and electrolyte depletion, including patients with primary or secondary aldosteronism (may have low potassium levels); those with severe or prolonged diarrhea or vomiting; and those with poor nutritional status. Fluid and electrolyte abnormalities should be corrected prior to initiating therapy, and blood pressure as well as serum electrolyte concentrations monitored periodically and maintained at normal ranges during therapy. Patients should be advised to immediately report signs and symptoms of fluid or electrolyte imbalance, including dry mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pains or cramps, muscular fatigue, hypotension, oliguria, tachycardia, arrhythmia, or gastrointestinal disturbances such as nausea and vomiting. Digitalized patients and patients with a history of ventricular arrhythmias should be monitored carefully, since development of hypokalemia may be particularly dangerous in these patients. The risk of hypokalemia may be minimized by slow diuresis, a lower thiazide dosage, potassium supplementation, or combined use with a potassium-sparing diuretic.

Major

hydroCHLOROthiazide Malnourished

Applies to: Malnourished

The use of thiazide diuretics is commonly associated with loss of electrolytes, most significantly potassium but also sodium, chloride, bicarbonate, and magnesium. The loss of other electrolytes such as phosphate, bromide and iodide is usually slight. Potassium and magnesium depletion may lead to cardiac arrhythmias and cardiac arrest. Other electrolyte-related complications include metabolic alkalosis and hyponatremia, which are rarely life-threatening. Therapy with thiazide diuretics should be administered cautiously in patients with or predisposed to fluid and electrolyte depletion, including patients with primary or secondary aldosteronism (may have low potassium levels); those with severe or prolonged diarrhea or vomiting; and those with poor nutritional status. Fluid and electrolyte abnormalities should be corrected prior to initiating therapy, and blood pressure as well as serum electrolyte concentrations monitored periodically and maintained at normal ranges during therapy. Patients should be advised to immediately report signs and symptoms of fluid or electrolyte imbalance, including dry mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pains or cramps, muscular fatigue, hypotension, oliguria, tachycardia, arrhythmia, or gastrointestinal disturbances such as nausea and vomiting. Digitalized patients and patients with a history of ventricular arrhythmias should be monitored carefully, since development of hypokalemia may be particularly dangerous in these patients. The risk of hypokalemia may be minimized by slow diuresis, a lower thiazide dosage, potassium supplementation, or combined use with a potassium-sparing diuretic.

Major

cisatracurium Myasthenia Gravis

Applies to: Myasthenia Gravis

The use of neuromuscular blocking agents may cause prolonged respiratory paralysis. Therapy with neuromuscular blocking agents should be administered cautiously in patients with myasthenia gravis. Use of a peripheral nerve stimulator may be helpful in evaluating the level of neuromuscular blockade.

Major

cisatracurium Paralytic Disorder

Applies to: Paralytic Disorder

Patients with hemiparesis or paraparesis may require higher dosages of non-depolarizing neuromuscular blocking agents in the affected limbs. Neuromuscular monitoring should be performed on a non-paretic limb to avoid inaccurate dosing.

Major

cisatracurium Prematurity/Underweight in Infancy

Applies to: Prematurity / Underweight in Infancy

Parenteral medications formulated in multidose vials often contain benzyl alcohol as a preservative. Their use is considered by drug manufacturers to be contraindicated in neonates, particularly premature infants and infants of low birth weight. When used in bacteriostatic saline intravascular flush and endotracheal tube lavage solutions, benzyl alcohol has been associated with fatalities and severe respiratory and metabolic complications in low-birth-weight premature infants. Thus, single-dose formulations should always be used in infants whenever possible. However, many experts feel that, in the absence of benzyl alcohol-free equivalents, the amount of the preservative present in these formulations should not necessarily preclude their use if they are clearly indicated. The American Academy of Pediatrics considers benzyl alcohol in low doses (such as when used as a preservative in some medications) to be safe for newborns. However, the administration of high dosages of these medications must take into account the total amount of benzyl alcohol administered. The level at which toxicity may occur is unknown.

Major

spironolactone Pulmonary Impairment

Applies to: Pulmonary Impairment

Acidosis alters the ratio of extracellular to intracellular potassium and may commonly lead to rapid increases in serum potassium levels. Conversely, high serum potassium concentrations may potentiate acidosis. Because of their hyperkalemic effects, therapy with potassium-sparing diuretics should be avoided in patients with metabolic or respiratory acidosis. These agents should be used cautiously in patients in whom acidosis may occur, such as patients with cardiopulmonary disease, severe respiratory disease, or poorly controlled diabetes. Acid-base balance and serum potassium levels should be monitored at regular intervals.

Major

cisatracurium Pulmonary Impairment

Applies to: Pulmonary Impairment

Neuromuscular blocking agents can cause respiratory depression and paralysis. Therapy with neuromuscular blocking agents should be administered cautiously in patients with pulmonary impairment. Treatment of respiratory paralysis consists of positive-pressure artificial respiration with oxygen and maintenance of a patent airway until the recovery of normal respiration is assured.

Major

spironolactone Renal Dysfunction

Applies to: Renal Dysfunction

The use of potassium-sparing diuretics is contraindicated in patients with anuria, acute or progressive renal insufficiency, or diabetic nephropathy. Potassium-sparing diuretics can cause hyperkalemia, which may result in life-threatening cardiac arrhythmias. Patients with impaired renal function may be particularly susceptible to the hyperkalemic effect of these drugs. Therapy with potassium-sparing diuretics should be administered cautiously in patients with evidence of renal function impairment (BUN > 30 mg/dL or serum creatinine > 1.5 mg/dL). If these drugs are used, serum potassium levels and renal function should be monitored at regular intervals. Determination of serum electrolytes is especially important during initiation of therapy, after a dosage adjustment, and during illness that could alter renal function.

Major

hydroCHLOROthiazide Renal Dysfunction

Applies to: Renal Dysfunction

Thiazide diuretics may be ineffective when the glomerular filtration rate is low (GFR < 25 mL/min) because they are not expected to be filtered into the renal tubule, their site of action. In addition, thiazide diuretics decrease the GFR and may precipitate azotemia in renal disease. Cumulative effects may also develop because most of these drugs are excreted unchanged in the urine by glomerular filtration and active tubular secretion. Therapy with thiazide diuretics should be administered cautiously at reduced dosages in patients with renal impairment. If renal function becomes progressively worse, as indicated by rising BUN or serum creatinine levels, an interruption or discontinuation of thiazide therapy should be considered.

Major

hydroCHLOROthiazide Ventricular Arrhythmia

Applies to: Ventricular Arrhythmia

The use of thiazide diuretics is commonly associated with loss of electrolytes, most significantly potassium but also sodium, chloride, bicarbonate, and magnesium. The loss of other electrolytes such as phosphate, bromide and iodide is usually slight. Potassium and magnesium depletion may lead to cardiac arrhythmias and cardiac arrest. Other electrolyte-related complications include metabolic alkalosis and hyponatremia, which are rarely life-threatening. Therapy with thiazide diuretics should be administered cautiously in patients with or predisposed to fluid and electrolyte depletion, including patients with primary or secondary aldosteronism (may have low potassium levels); those with severe or prolonged diarrhea or vomiting; and those with poor nutritional status. Fluid and electrolyte abnormalities should be corrected prior to initiating therapy, and blood pressure as well as serum electrolyte concentrations monitored periodically and maintained at normal ranges during therapy. Patients should be advised to immediately report signs and symptoms of fluid or electrolyte imbalance, including dry mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pains or cramps, muscular fatigue, hypotension, oliguria, tachycardia, arrhythmia, or gastrointestinal disturbances such as nausea and vomiting. Digitalized patients and patients with a history of ventricular arrhythmias should be monitored carefully, since development of hypokalemia may be particularly dangerous in these patients. The risk of hypokalemia may be minimized by slow diuresis, a lower thiazide dosage, potassium supplementation, or combined use with a potassium-sparing diuretic.

Major

hydroCHLOROthiazide Vomiting

Applies to: Vomiting

The use of thiazide diuretics is commonly associated with loss of electrolytes, most significantly potassium but also sodium, chloride, bicarbonate, and magnesium. The loss of other electrolytes such as phosphate, bromide and iodide is usually slight. Potassium and magnesium depletion may lead to cardiac arrhythmias and cardiac arrest. Other electrolyte-related complications include metabolic alkalosis and hyponatremia, which are rarely life-threatening. Therapy with thiazide diuretics should be administered cautiously in patients with or predisposed to fluid and electrolyte depletion, including patients with primary or secondary aldosteronism (may have low potassium levels); those with severe or prolonged diarrhea or vomiting; and those with poor nutritional status. Fluid and electrolyte abnormalities should be corrected prior to initiating therapy, and blood pressure as well as serum electrolyte concentrations monitored periodically and maintained at normal ranges during therapy. Patients should be advised to immediately report signs and symptoms of fluid or electrolyte imbalance, including dry mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pains or cramps, muscular fatigue, hypotension, oliguria, tachycardia, arrhythmia, or gastrointestinal disturbances such as nausea and vomiting. Digitalized patients and patients with a history of ventricular arrhythmias should be monitored carefully, since development of hypokalemia may be particularly dangerous in these patients. The risk of hypokalemia may be minimized by slow diuresis, a lower thiazide dosage, potassium supplementation, or combined use with a potassium-sparing diuretic.

Moderate

hydroCHLOROthiazide Abnormal Glucose Tolerance

Applies to: Abnormal Glucose Tolerance

Thiazide diuretics may cause hyperglycemia and glycosuria in patients with diabetes. They may also precipitate diabetes in prediabetic patients. These effects are usually reversible following discontinuation of the drugs. Therapy with thiazide diuretics should be administered cautiously in patients with diabetes mellitus, glucose intolerance, or a predisposition to hyperglycemia. Patients with diabetes mellitus should be monitored more closely during thiazide therapy, and their antidiabetic regimen adjusted accordingly.

Moderate

hydroCHLOROthiazide Asthma

Applies to: Asthma

Thiazide diuretics should be used with caution in patients with history of bronchial asthma as sensitivity reactions may occur.

Moderate

hydroCHLOROthiazide Diabetes Mellitus

Applies to: Diabetes Mellitus

Thiazide diuretics may cause hyperglycemia and glycosuria in patients with diabetes. They may also precipitate diabetes in prediabetic patients. These effects are usually reversible following discontinuation of the drugs. Therapy with thiazide diuretics should be administered cautiously in patients with diabetes mellitus, glucose intolerance, or a predisposition to hyperglycemia. Patients with diabetes mellitus should be monitored more closely during thiazide therapy, and their antidiabetic regimen adjusted accordingly.

Moderate

spironolactone Gout

Applies to: Gout

Potassium-sparing diuretics have been reported to elevate serum uric acid levels. Therapy with these agents should be administered cautiously in patients with a history of gout.

Moderate

hydroCHLOROthiazide Gout

Applies to: Gout

Thiazide diuretics decrease the rate of uric acid excretion. Hyperuricemia occurs frequently but is usually asymptomatic and rarely leads to clinical gout except in patients with a history of gout or chronic renal failure. Therapy with thiazide diuretics should be administered cautiously in such patients.

Moderate

hydroCHLOROthiazide Hyperlipidemia

Applies to: Hyperlipidemia

Thiazide diuretics may increase serum triglyceride and cholesterol levels, primarily LDL and VLDL. Whether these effects are dose-related and sustained during chronic therapy are unknown. Patients with preexisting hyperlipidemia may require closer monitoring during thiazide therapy, and adjustments made accordingly in their lipid-lowering regimen

Moderate

hydroCHLOROthiazide Hyperparathyroidism

Applies to: Hyperparathyroidism

Urinary calcium excretion is decreased by thiazide diuretics during chronic administration. Pathologic changes in the parathyroid gland with hypercalcemia and hypophosphatemia have been reported during prolonged therapy. However, the common complications of hyperparathyroidism such as renal lithiasis, bone resorption, and peptic ulceration have not been seen. Clinicians should be cognizant of these effects when prescribing or administering thiazide therapy to patients with hyperparathyroidism. These drugs should be discontinued before carrying out tests for parathyroid function.

Moderate

spironolactone Liver Disease

Applies to: Liver Disease

Rapid alterations in fluid and electrolyte balance may precipitate hepatic coma in patients with liver disease. Hepatic encephalopathy has been associated with the use of diuretics, most frequently thiazides but also some potassium-sparing diuretics. Therapy with all diuretics should be administered cautiously in patients with impaired hepatic function. These patients should be monitored carefully for signs and symptoms of hepatic encephalopathy such as tremors, confusion, increased jaundice, and coma.

Moderate

hydroCHLOROthiazide Thyroid Disease

Applies to: Thyroid Disease

Thiazide diuretics may decrease serum PBI (protein-bound iodine) levels without associated thyroid disturbance. Clinicians should be cognizant of this effect when prescribing or administering thiazide therapy to patients with thyroid disorders.

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.