Skip to main content

Drug Interactions between bendroflumethiazide / rauwolfia serpentina and PrandiMet

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

bendroflumethiazide rauwolfia serpentina

Applies to: bendroflumethiazide / rauwolfia serpentina and bendroflumethiazide / rauwolfia serpentina

MONITOR: The hypotensive effects of thiazide diuretics and alpha-adrenergic blockers may be additive. Postural hypotension may occur.

MANAGEMENT: Hemodynamic responses should be monitored during coadministration, especially during the first few weeks of therapy. Patients should be advised to take the alpha-blocker at bedtime and to notify their physician if they experience dizziness or syncope while awake.

References

  1. Achari R, Laddu A "Terazosin: a new alpha adrenoceptor blocking drug." J Clin Pharmacol 32 (1992): 520-3
  2. Kuokkanen K, Mattila MJ "Demonstration of an additive antihypertensive effect of prazosin and polythiazide in out-patient." Curr Ther Res Clin Exp 17 (1975): 431-6
  3. Pool JL "Combination antihypertensive therapy with terazosin and other antihypertensive agents: results of clinical trials." Am Heart J 122 (1991): 926-31
  4. Cohen J "Long-term efficacy and safety of terazosin alone and in combination with other antihypertensive agents." Am Heart J 122 (1991): 919-25
  5. "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc (2002):
View all 5 references

Switch to consumer interaction data

Moderate

bendroflumethiazide metFORMIN

Applies to: bendroflumethiazide / rauwolfia serpentina and PrandiMet (metformin / repaglinide)

MONITOR: Diuretic-induced renal impairment and dehydration may increase the risk of lactic acidosis in patients who are concomitantly taking metformin. In addition, thiazides and other diuretics may interfere with glucose control by causing hyperglycemia, glucose intolerance, new-onset diabetes mellitus, and/or exacerbation of preexisting diabetes.

MANAGEMENT: Close clinical monitoring is recommended if diuretics are coadministered with antidiabetic agents. Patients should be advised to monitor their blood glucose and to promptly notify their doctor if they experience possible signs of lactic acidosis (such as malaise, myalgia, respiratory distress, hyperventilation, slow or irregular heartbeat, somnolence, abdominal upset) or loss of glycemic control. Dose adjustments of metformin may be required. Likewise, patients should be observed for hypoglycemia if diuretics are withdrawn from their therapeutic regimen.

References

  1. "Multum Information Services, Inc. Expert Review Panel"
  2. "Product Information. Glucophage (metformin)." Bristol-Myers Squibb PROD (2001):
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  4. Cerner Multum, Inc. "Australian Product Information." O 0
View all 4 references

Switch to consumer interaction data

Moderate

bendroflumethiazide repaglinide

Applies to: bendroflumethiazide / rauwolfia serpentina and PrandiMet (metformin / repaglinide)

MONITOR: The efficacy of insulin and other antidiabetic agents may be diminished by certain drugs, including atypical antipsychotics, corticosteroids, diuretics, estrogens, gonadotropin-releasing hormone agonists, human growth hormone, phenothiazines, progestins, protease inhibitors, sympathomimetic amines, thyroid hormones, L-asparaginase, alpelisib, copanlisib, danazol, diazoxide, isoniazid, megestrol, omacetaxine, phenytoin, sirolimus, tagraxofusp, temsirolimus, as well as pharmacologic dosages of nicotinic acid and adrenocorticotropic agents. These drugs may interfere with blood glucose control because they can cause hyperglycemia, glucose intolerance, new-onset diabetes mellitus, and/or exacerbation of preexisting diabetes.

MANAGEMENT: Caution is advised when drugs that can interfere with glucose metabolism are prescribed to patients with diabetes. Close clinical monitoring of glycemic control is recommended following initiation or discontinuation of these drugs, and the dosages of concomitant antidiabetic agents adjusted as necessary. Patients should be advised to notify their physician if their blood glucose is consistently high or if they experience symptoms of severe hyperglycemia such as excessive thirst and increases in the volume or frequency of urination. Likewise, patients should be observed for hypoglycemia when these drugs are withdrawn from their therapeutic regimen.

References

  1. Greenstone MA, Shaw AB "Alternate day corticosteroid causes alternate day hyperglycaemia." Postgrad Med J 63 (1987): 761-4
  2. Pollare T, Lithell H, Berne C "A comparison of the effects of hydrochlorothiazide and captopril on glucose and lipid metabolism in patients with hypertension." N Engl J Med 321 (1989): 868-73
  3. Carter BL, Small RE, Mandel MD, Starkman MT "Phenytoin-induced hyperglycemia." Am J Hosp Pharm 38 (1981): 1508-12
  4. Al-Rubeaan K, Ryan EA "Phenytoin-induced insulin insensitivity." Diabet Med 8 (1991): 968-70
  5. Chaudhuri ML, Catania J "A comparison of the effects of bumetanide (Burinex) and frusemide on carbohydrate metabolism in the elderly." Br J Clin Pract 42 (1988): 427-9
  6. Goldman JA, Neri A, Ovadia J, Eckerling B, Vries A, de "Effect of chlorothiazide on intravenous glucose tolerance in pregnancy." Am J Obstet Gynecol 105 (1969): 556-60
  7. Miller NR, Moses H "Transient oculomotor nerve palsy. Association with thiazide-induced glucose intolerance." JAMA 240 (1978): 1887-8
  8. Kansal PC, Buse J, Buse MG "Thiazide diuretics and control of diabetes mellitus." South Med J 62 (1969): 1372-9
  9. Andersen OO, Persson I "Carbohydrate metabolism during treatment with chlorthalidone and ethacrynic acid." Br Med J 2 (1968): 798-801
  10. Curtis J, Horrigan F, Ahearn D, Varney R, Sandler SG "Chlorthalidone-induced hyperosmolar hyperglycemic nonketotic coma." JAMA 220 (1972): 1592-3
  11. Chowdhury FR, Bleicher SJ "Chlorthalidone--induced hypokalemia and abnormal carbohydrate metabolism." Horm Metab Res 2 (1970): 13-6
  12. Diamond MT "Hyperglycemic hyperosmolar coma associated with hydrochlorothiazide and pancreatitis." N Y State J Med 72 (1972): 1741-2
  13. Jones IG, Pickens PT "Diabetes mellitus following oral diuretics." Practitioner 199 (1967): 209-10
  14. Black DM, Filak AT "Hyperglycemia with non-insulin-dependent diabetes following intraarticular steroid injection." J Fam Pract 28 (1989): 462-3
  15. Gunnarsson R, Lundgren G, Magnusson G, Ost L, Groth CG "Steroid diabetes--a sign of overtreatment with steroids in the renal graft recipient?" Scand J Urol Nephrol Suppl 54 (1980): 135-8
  16. Murphy MB, Kohner E, Lewis PJ, Schumer B, Dollery CT "Glucose intolerance in hypertensive patients treated with diuretics: a fourteen-year follow-up." Lancet 2 (1982): 1293-5
  17. Seltzer HS, Allen EW "Hyperglycemia and inhibition of insulin secretion during administration of diazoxide and trichlormethiazide in man." Diabetes 18 (1969): 19-28
  18. Jori A, Carrara MC "On the mechanism of the hyperglycaemic effect of chlorpromazine." J Pharm Pharmacol 18 (1966): 623-4
  19. Erle G, Basso M, Federspil G, Sicolo N, Scandellari C "Effect of chlorpromazine on blood glucose and plasma insulin in man." Eur J Clin Pharmacol 11 (1977): 15-8
  20. "Product Information. Thorazine (chlorpromazine)." SmithKline Beecham PROD (2002):
  21. "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  22. "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  23. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  24. "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical PROD (2002):
  25. "Product Information. Carafate (sucralfate)." Hoechst Marion Roussel PROD (2001):
  26. Stambaugh JE, Tucker DC "Effect of diphenylhydantoin on glucose tolerance in patients with hypoglycemia." Diabetes 23 (1974): 679-83
  27. Malherbe C, Burrill KC, Levin SR, Karam JH, Forsham PH "Effect of diphenylhydantoin on insulin secretion in man." N Engl J Med 286 (1972): 339-42
  28. Javier Z, Gershberg H, Hulse M "Ovulatory suppressants, estrogens, and carbohydrate metabolism." Metabolism 17 (1968): 443-56
  29. Sotaniemi E, Kontturi M, Larmi T "Effect of diethylstilbestrol on blood glucose of prostatic cancer patients." Invest Urol 10 (1973): 438-41
  30. Bell DS "Insulin resistance. An often unrecognized problem accompanying chronic medical disorders." Postgrad Med 93 (1993): 99-103,
  31. Berlin I "Prazosin, diuretics, and glucose intolerance." Ann Intern Med 119 (1993): 860
  32. Rowe P, Mather H "Hyperosmolar non-ketotic diabetes mellitus associated with metolazone." Br Med J 291 (1985): 25-6
  33. Haiba NA, el-Habashy MA, Said SA, Darwish EA, Abdel-Sayed WS, Nayel SE "Clinical evaluation of two monthly injectable contraceptives and their effects on some metabolic parameters." Contraception 39 (1989): 619-32
  34. Virutamasen P, Wongsrichanalai C, Tangkeo P, Nitichai Y, Rienprayoon D "Metabolic effects of depot-medroxyprogesterone acetate in long-term users: a cross-sectional study." Int J Gynaecol Obstet 24 (1986): 291-6
  35. Dimitriadis G, Tegos C, Golfinopoulou L, Roboti C, Raptis S "Furosemide-induced hyperglycaemia - the implication of glycolytic kinases." Horm Metab Res 25 (1993): 557-9
  36. Goldman JA, Ovadia JL "The effect of estrogen on intravenous glucose tolerance in woman." Am J Obstet Gynecol 103 (1969): 172-8
  37. Hannaford PC, Kay CR "Oral contraceptives and diabetes mellitus." BMJ 299 (1989): 1315-6
  38. Spellacy WN, Ellingson AB, Tsibris JC "The effects of two triphasic oral contraceptives on carbohydrate metabolism in women during 1 year of use." Fertil Steril 51 (1989): 71-4
  39. Ludvik B, Clodi M, Kautzky-Willer A, Capek M, Hartter E, Pacini G, Prager R "Effect of dexamethasone on insulin sensitivity, islet amyloid polypeptide and insulin secretion in humans." Diabetologia 36 (1993): 84-7
  40. Domenet JG "Diabetogenic effect of oral diuretics." Br Med J 3 (1968): 188
  41. Coni NK, Gordon PW, Mukherjee AP, Read PR "The effect of frusemide and ethacrynic acid on carbohydrate metabolism." Age Ageing 3 (1974): 85-90
  42. Schmitz O, Hermansen K, Nielsen OH, Christensen CK, Arnfred J, Hansen HE, Mogensen CE, Orskov H, Beck-Nielsen H "Insulin action in insulin-dependent diabetics after short-term thiazide therapy." Diabetes Care 9 (1986): 631-6
  43. Blayac JP, Ribes G, Buys D, Puech R, Loubatieres-Mariani MM "Effects of a new benzothiadiazine derivative, LN 5330, on insulin secretion." Arch Int Pharmacodyn Ther 253 (1981): 154-63
  44. Elmfeldt D, Berglund G, Wedel H, Wilhelmsen L "Incidence and importance of metabolic side-effects during antihypertensive therapy." Acta Med Scand Suppl 672 (1983): 79-83
  45. Winchester JF, Kellett RJ, Boddy K, Boyle P, Dargie HJ, Mahaffey ME, Ward DM, Kennedy AC "Metolazone and bendroflumethiazide in hypertension: physiologic and metabolic observations." Clin Pharmacol Ther 28 (1980): 611-8
  46. Petri M, Cumber P, Grimes L, Treby D, Bryant R, Rawlins D, Ising H "The metabolic effects of thiazide therapy in the elderly: a population study." Age Ageing 15 (1986): 151-5
  47. "Product Information. Glucophage (metformin)." Bristol-Myers Squibb PROD (2001):
  48. Harper R, Ennis CN, Heaney AP, Sheridan B, Gormley M, Atkinson AB, Johnston GD, Bell PM "A comparison of the effects of low- and conventional-dose thiazide diuretic on insulin action in hypertensive patients with NIDDM." Diabetologia 38 (1995): 853-9
  49. "Product Information. Precose (acarbose)." Bayer PROD (2001):
  50. "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical PROD (2001):
  51. "Product Information. Amaryl (glimepiride)." Hoechst Marion Roussel PROD (2001):
  52. Charan VD, Desai N, Singh AP, Choudhry VP "Diabetes mellitus and pancreatitis as a complication of L- asparaginase therapy." Indian Pediatr 30 (1993): 809-10
  53. Seifer DB, Freedman LN, Cavender JR, Baker RA "Insulin-dependent diabetes mellitus associated with danazol." Am J Obstet Gynecol 162 (1990): 474-5
  54. "Product Information. Crixivan (indinavir)." Merck & Co., Inc PROD (2001):
  55. Pickkers P, Schachter M, Hughes AD, Feher MD, Sever PS "Thiazide-induced hyperglycaemia: a role for calcium-activated potassium channels?" Diabetologia 39 (1996): 861-4
  56. "Product Information. Viracept (nelfinavir)." Agouron Pharma Inc PROD (2001):
  57. Dube MP, Johnson DL, Currier JS, Leedom JM "Protease inhibitor-associated hyperglycaemia." Lancet 350 (1997): 713-4
  58. "Product Information. Oncaspar (pegaspargase)." Rhone Poulenc Rorer PROD (2001):
  59. "Product Information. Prandin (repaglinide)." Novo Nordisk Pharmaceuticals Inc PROD (2001):
  60. "Product Information. Elspar (asparaginase)." Merck & Co., Inc PROD (2001):
  61. "Product Information. Hyperstat (diazoxide)." Apothecon Inc (2022):
  62. "Product Information. Megace (megestrol)." Bristol-Myers Squibb PROD (2001):
  63. Walli R, Demant T "Impaired glucose tolerance and protease inhibitors." Ann Intern Med 129 (1998): 837-8
  64. "Product Information. Agenerase (amprenavir)." Glaxo Wellcome PROD (2001):
  65. Mauss S, Wolf E, Jaeger H "Impaired glucose tolerance in HIV-positive patients receiving and those not receiving protease inhibitors." Ann Intern Med 130 (1999): 162-3
  66. Kaufman MB, Simionatto C "A review of protease inhibitor-induced hyperglycemia." Pharmacotherapy 19 (1999): 114-7
  67. "Product Information. Tolinase (tolazamide)." Pharmacia and Upjohn PROD (2001):
  68. "Product Information. Orinase (tolbutamide)." Pharmacia and Upjohn PROD (2001):
  69. "Product Information. Dymelor (acetohexamide)." Lilly, Eli and Company PROD (2001):
  70. Wehring H, Alexander B, Perry PJ "Diabetes mellitus associated with clozapine therapy." Pharmacotherapy 20 (2000): 844-7
  71. Tsiodras S, Mantzoros C, Hammer S, Samore M "Effects of protease inhibitors on hyperglycemia, hyperlipidemia, and lipodystrophy - A 5-year cohort study." Arch Intern Med 160 (2000): 2050-6
  72. "Product Information. Fortovase (saquinavir)." Roche Laboratories PROD (2001):
  73. "Product Information. Starlix (nateglinide)." Novartis Pharmaceuticals PROD (2001):
  74. Hardy H, Esch LD, Morse GD "Glucose disorders associated with HIV and its drug therapy." Ann Pharmacother 35 (2001): 343-51
  75. Leary WP, Reyes AJ "Drug interactions with diuretics." S Afr Med J 65 (1984): 455-61
  76. "Product Information. NovoLOG Mix 70/30 (insulin aspart-insulin aspart protamine)." Novo Nordisk Pharmaceuticals Inc (2022):
  77. "Product Information. Reyataz (atazanavir)." Bristol-Myers Squibb (2003):
  78. "Product Information. Lexiva (fosamprenavir)." GlaxoSmithKline (2003):
  79. "Product Information. Apidra (insulin glulisine)." Aventis Pharmaceuticals (2004):
  80. "Product Information. Prezista (darunavir)." Ortho Biotech Inc (2006):
  81. "Product Information. Zolinza (vorinostat)." Merck & Co., Inc (2006):
  82. "Product Information. Torisel (temsirolimus)." Wyeth-Ayerst Laboratories (2007):
  83. "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc (2015):
  84. "Product Information. Elzonris (tagraxofusp)." Stemline Therapeutics (2019):
  85. "Product Information. Piqray (alpelisib)." Novartis Pharmaceuticals (2019):
View all 85 references

Switch to consumer interaction data

Moderate

rauwolfia serpentina repaglinide

Applies to: bendroflumethiazide / rauwolfia serpentina and PrandiMet (metformin / repaglinide)

MONITOR: Postganglionic adrenergic blocking agents may potentiate the hypoglycemic effects of insulin and insulin secretagogues (e.g., sulfonylureas, meglitinides). Limited data have demonstrated possible hypoglycemic activity with agents such as guanethidine and reserpine. The mechanism may involve depletion of catecholamine stores from adrenergic nerve endings, which can interfere with glycogenolysis and other mechanisms related to regulation of blood glucose levels. In one case report, a diabetic patient required an insulin dose increase following discontinuation of guanethidine therapy. Another study found improved glucose tolerance in three patients with type II diabetes given guanethidine 50 to 90 mg/day. Postganglionic adrenergic blocking agents can also diminish the physiological response to hypoglycemia induced by insulin and insulin secretagogues, as catecholamines are responsible for certain symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes.

MANAGEMENT: Close monitoring for the development of hypoglycemia is recommended when postganglionic adrenergic blocking agents are coadministered with insulin or insulin secretagogues, particularly in patients with advanced age and/or renal impairment. Insulin and oral antidiabetic dosages may require adjustment if an interaction is suspected. Patients should be instructed about the need for regular monitoring of blood glucose levels and be aware that certain symptoms of hypoglycemia such as tremor and tachycardia may be masked during antiadrenergic therapy. However, other symptoms such as headache, dizziness, drowsiness, nausea, hunger, and sweating may be unaffected. Patients should be observed for loss of glycemic control when antiadrenergic therapy is withdrawn.

References

  1. Gupta KK "Guanethidine and diabetes." Br Med J 2 (1968): 697-8
  2. Gupta KK "The antidiabetic action of guanethidine." Postgrad Med J 45 (1969): 455-6
  3. Gupta KK "Guanethidine and glucose tolerance in diabetics." Br Med J 3 (1968): 679

Switch to consumer interaction data

Moderate

metFORMIN repaglinide

Applies to: PrandiMet (metformin / repaglinide) and PrandiMet (metformin / repaglinide)

MONITOR: Coadministration of metformin with an insulin secretagogue (e.g., sulfonylurea, meglitinide) or insulin may potentiate the risk of hypoglycemia. Although metformin alone generally does not cause hypoglycemia under normal circumstances of use, the added therapeutic effect when combined with other antidiabetic agents may result in hypoglycemia. The risk is further increased when caloric intake is deficient or when strenuous exercise is not compensated by caloric supplementation.

MANAGEMENT: A lower dosage of the insulin secretagogue or insulin may be required when used with metformin. Blood glucose should be closely monitored, and patients should be educated on the potential signs and symptoms of hypoglycemia (e.g., headache, dizziness, drowsiness, nervousness, confusion, tremor, hunger, weakness, perspiration, palpitation, tachycardia) and appropriate remedial actions to take if it occurs. Patients should also be advised to take precautions to avoid hypoglycemia while driving or operating hazardous machinery.

References

  1. Wiernsperger N, Rapin JR "Metformin-insulin interactions: from organ to cell." Diabetes Metab Rev 11 Suppl (1995): s3-12
  2. Okada S, Ishii K, Hamada H, Tanokuchi S, Ichiki K, Ota Z "Can alpha-glucosidase inhibitors reduce the insulin dosage administered to patients with non-insulin-dependent diabetes mellitus?" J Int Med Res 23 (1995): 487-91

Switch to consumer interaction data

Drug and food interactions

Major

metFORMIN food

Applies to: PrandiMet (metformin / repaglinide)

GENERALLY AVOID: Alcohol can potentiate the effect of metformin on lactate metabolism and increase the risk of lactic acidosis. In addition, alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Although hypoglycemia rarely occurs during treatment with metformin alone, the risk may increase with acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes.

Food may have varying effects on the absorption of metformin from immediate-release versus extended-release formulations. When a single 850 mg dose of immediate-release metformin was administered with food, mean peak plasma concentration (Cmax) and systemic exposure (AUC) decreased by 40% and 25%, respectively, and time to peak plasma concentration (Tmax) increased by 35 minutes compared to administration under fasting conditions. By contrast, administration of extended-release metformin with food increased AUC by 50% without affecting Cmax or Tmax, and both high- and low-fat meals had the same effect. These data may not be applicable to formulations that contain metformin with other oral antidiabetic agents.

MANAGEMENT: Metformin should be taken with meals, and excessive alcohol intake should be avoided during treatment. Diabetes patients in general should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Alcohol should not be consumed on an empty stomach or following exercise, as it may increase the risk of hypoglycemia. Patients should contact their physician immediately if they experience potential signs and symptoms of lactic acidosis such as malaise, myalgia, respiratory distress, increasing somnolence, and nonspecific abdominal distress (especially after stabilization of metformin therapy, when gastrointestinal symptoms are uncommon). With more marked acidosis, there may also be associated hypothermia, hypotension, and resistant bradyarrhythmias. Metformin should be withdrawn promptly if lactic acidosis is suspected. Serum electrolytes, ketones, blood glucose, blood pH, lactate levels, and blood metformin levels may be useful in establishing a diagnosis. Lactic acidosis should be suspected in any diabetic patient with metabolic acidosis lacking evidence of ketoacidosis (ketonuria and ketonemia).

References

  1. "Product Information. Glucophage (metformin)." Bristol-Myers Squibb PROD (2001):
  2. "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care 25(Suppl 1) (2002): S50-S60

Switch to consumer interaction data

Moderate

repaglinide food

Applies to: PrandiMet (metformin / repaglinide)

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther 49 (1991): 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  4. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie 49 (1994): 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  8. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther 58 (1995): 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol 36 (1996): 469-76
  11. Majeed A, Kareem A "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol 10 (1996): 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol 42 (1996): p662
  13. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther 63 (1998): 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet 23 (1998): 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther 64 (1998): 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther 64 (1998): 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  22. Eagling VA, Profit L, Back DJ "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol 48 (1999): 543-52
  23. Damkier P, Hansen LL, Brosen K "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol 48 (1999): 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther 21 (1999): 1890-9
  25. Dresser GK, Spence JD, Bailey DG "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet 38 (2000): 41-57
  26. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol 49 (2000): 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit 23 (2001): 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol 44 (1993): 295-8
  32. Flanagan D "Understanding the grapefruit-drug interaction." Gen Dent 53 (2005): 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Moderate

bendroflumethiazide food

Applies to: bendroflumethiazide / rauwolfia serpentina

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol 11 (1991): 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med 101 (1984): 498-9
  3. Feder R "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry 52 (1991): 139
  4. Ellison JM, Milofsky JE, Ely E "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry 51 (1990): 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit 23 (2001): 435-40
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. Pacher P, Kecskemeti V "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des 10 (2004): 2463-75
  8. Andrews C, Pinner G "Postural hypotension induced by paroxetine." BMJ 316 (1998): 595
View all 8 references

Switch to consumer interaction data

Moderate

rauwolfia serpentina food

Applies to: bendroflumethiazide / rauwolfia serpentina

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol 11 (1991): 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med 101 (1984): 498-9
  3. Feder R "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry 52 (1991): 139
  4. Ellison JM, Milofsky JE, Ely E "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry 51 (1990): 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit 23 (2001): 435-40
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. Pacher P, Kecskemeti V "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des 10 (2004): 2463-75
  8. Andrews C, Pinner G "Postural hypotension induced by paroxetine." BMJ 316 (1998): 595
View all 8 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.