Skip to main content

Drug Interactions between aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide and Mitran

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

aspirin calcium carbonate

Applies to: aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide and aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide

MONITOR: Chronic administration of antacids may reduce serum salicylate concentrations in patients receiving large doses of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to urinary alkalinization by antacids, resulting in increased renal salicylate clearance. In three children treated with large doses of aspirin for rheumatic fever, serum salicylate levels declined 30% to 70% during coadministration with a magnesium and aluminum hydroxide antacid. Other studies have found similar, albeit less dramatic results. Antacids reportedly have no effect on the oral bioavailability of aspirin in healthy adults. However, administration of antacids containing either aluminum and magnesium hydroxide or calcium carbonate two hours before aspirin dosing led to reduced absorption of aspirin in uremic patients.

MANAGEMENT: Patients treated chronically with antacids (or oral medications that contain antacids such as didanosine buffered tablets or pediatric oral solution) and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. D'Arcy PF, McElnay JC "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm 21 (1987): 607-17
  2. Gaspari F, Vigano G, Locatelli M, Remuzzi G "Influence of antacid administrations on aspirin absorption in patients with chronic renal failure on maintenance hemodialysis." Am J Kidney Dis 11 (1988): 338-42
  3. Furst DE "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl 17 (1988): 58-62
  4. Miners JO "Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid." Clin Pharmacokinet 17 (1989): 327-44
  5. Levy G, Lampman T, Kamath BL, Garrettson LK "Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid." N Engl J Med 293 (1975): 323-5
  6. Shastri RA "Effect of antacids on salicylate kinetics." Int J Clin Pharmacol Ther Toxicol 23 (1985): 480-4
  7. Covington TR, eds., Lawson LC, Young LL "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association (1993):
  8. Brouwers JRBJ, Desmet PAGM "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet 27 (1994): 462-85
  9. "Product Information. Diflunisal (diflunisal)." Chartwell RX, LLC. (2023):
View all 9 references

Switch to consumer interaction data

Moderate

aspirin aluminum hydroxide

Applies to: aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide and aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide

MONITOR: Chronic administration of antacids may reduce serum salicylate concentrations in patients receiving large doses of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to urinary alkalinization by antacids, resulting in increased renal salicylate clearance. In three children treated with large doses of aspirin for rheumatic fever, serum salicylate levels declined 30% to 70% during coadministration with a magnesium and aluminum hydroxide antacid. Other studies have found similar, albeit less dramatic results. Antacids reportedly have no effect on the oral bioavailability of aspirin in healthy adults. However, administration of antacids containing either aluminum and magnesium hydroxide or calcium carbonate two hours before aspirin dosing led to reduced absorption of aspirin in uremic patients.

MANAGEMENT: Patients treated chronically with antacids (or oral medications that contain antacids such as didanosine buffered tablets or pediatric oral solution) and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. D'Arcy PF, McElnay JC "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm 21 (1987): 607-17
  2. Gaspari F, Vigano G, Locatelli M, Remuzzi G "Influence of antacid administrations on aspirin absorption in patients with chronic renal failure on maintenance hemodialysis." Am J Kidney Dis 11 (1988): 338-42
  3. Furst DE "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl 17 (1988): 58-62
  4. Miners JO "Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid." Clin Pharmacokinet 17 (1989): 327-44
  5. Levy G, Lampman T, Kamath BL, Garrettson LK "Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid." N Engl J Med 293 (1975): 323-5
  6. Shastri RA "Effect of antacids on salicylate kinetics." Int J Clin Pharmacol Ther Toxicol 23 (1985): 480-4
  7. Covington TR, eds., Lawson LC, Young LL "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association (1993):
  8. Brouwers JRBJ, Desmet PAGM "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet 27 (1994): 462-85
  9. "Product Information. Diflunisal (diflunisal)." Chartwell RX, LLC. (2023):
View all 9 references

Switch to consumer interaction data

Moderate

aspirin magnesium hydroxide

Applies to: aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide and aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide

MONITOR: Chronic administration of antacids may reduce serum salicylate concentrations in patients receiving large doses of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to urinary alkalinization by antacids, resulting in increased renal salicylate clearance. In three children treated with large doses of aspirin for rheumatic fever, serum salicylate levels declined 30% to 70% during coadministration with a magnesium and aluminum hydroxide antacid. Other studies have found similar, albeit less dramatic results. Antacids reportedly have no effect on the oral bioavailability of aspirin in healthy adults. However, administration of antacids containing either aluminum and magnesium hydroxide or calcium carbonate two hours before aspirin dosing led to reduced absorption of aspirin in uremic patients.

MANAGEMENT: Patients treated chronically with antacids (or oral medications that contain antacids such as didanosine buffered tablets or pediatric oral solution) and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. D'Arcy PF, McElnay JC "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm 21 (1987): 607-17
  2. Gaspari F, Vigano G, Locatelli M, Remuzzi G "Influence of antacid administrations on aspirin absorption in patients with chronic renal failure on maintenance hemodialysis." Am J Kidney Dis 11 (1988): 338-42
  3. Furst DE "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl 17 (1988): 58-62
  4. Miners JO "Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid." Clin Pharmacokinet 17 (1989): 327-44
  5. Levy G, Lampman T, Kamath BL, Garrettson LK "Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid." N Engl J Med 293 (1975): 323-5
  6. Shastri RA "Effect of antacids on salicylate kinetics." Int J Clin Pharmacol Ther Toxicol 23 (1985): 480-4
  7. Covington TR, eds., Lawson LC, Young LL "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association (1993):
  8. Brouwers JRBJ, Desmet PAGM "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet 27 (1994): 462-85
  9. "Product Information. Diflunisal (diflunisal)." Chartwell RX, LLC. (2023):
View all 9 references

Switch to consumer interaction data

Minor

chlordiazePOXIDE calcium carbonate

Applies to: Mitran (chlordiazepoxide) and aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide

A number of studies have reported that antacids can delay the gastrointestinal absorption and reduce the peak plasma concentration (Cmax) of some benzodiazepines, including clorazepate, chlordiazepoxide and diazepam, although the overall extent of absorption is generally not affected. The exact mechanism of interaction is unknown, but may involve delayed gastric emptying or cation binding of the benzodiazepine. As a result, benzodiazepine onset of action may be delayed and clinical effects diminished. However, one study reported a significant increase in diazepam absorption during coadministration with aluminum hydroxide, and there was a marginal increase in the onset of sedative effect. Aluminum hydroxide also increased triazolam Cmax and systemic exposure (AUC) in 11 dialysis patients such that their drug levels reached into the range observed for the matched controls. In contrast, another study by the same group of investigators found no significant effect of aluminum hydroxide on temazepam absorption or Cmax in 11 patients with end-stage renal disease. A multi-dose study also failed to find an effect of antacids on the steady-state levels of N-desmethyldiazepam, the active metabolite of clorazepate, although an acidic environment is thought to be necessary for the rapid conversion. Based on available data, the clinical significance of this interaction appears to be minor. As a precaution, patients may consider separating the administration times of benzodiazepines and antacids or other oral medications that contain antacids (e.g., didanosine buffered tablets or pediatric oral solution) by 2 to 3 hours.

References

  1. Chun AH, Carrigan PJ, Hoffman DJ, Kershner RP, Stuart JD "Effect of antacids on absorption of clorazepate." Clin Pharmacol Ther 22 (1977): 329-35
  2. Nair SG, Gamble JA, Dundee JW, Howard PJ "The influence of three antacids on the absorption and clinical action of oral diazepam." Br J Anaesth 48 (1976): 1175-80
  3. Greenblatt DJ, Shader RI, Harmatz JS, Franke K, Koch-Weser J "Absorption rate, blood concentrations, and early response to oral chlordiazepoxide." Am J Psychiatry 134 (1977): 559-62
  4. Greenblatt DJ, Allen MD, MacLaughlin DS, Harmatz JS, Shader RI "Diazepam absorption: effect of antacids and food." Clin Pharmacol Ther 24 (1978): 600-9
  5. Shader RI, Georgotas A, Greenblatt DJ, Harmatz JS, Allen MD "Impaired absorption of desmethyldiazepam from clorazepate by magnesium aluminum hydroxide." Clin Pharmacol Ther 24 (1978): 308-15
  6. Kroboth PD, Smith RB, Rault R, Silver MR, Sorkin MI, Puschett JB, Juhl RP "Effects of end-stage renal disease and aluminum hydroxide on temazepam kinetics." Clin Pharmacol Ther 37 (1985): 453-9
  7. Kroboth PD, Smith RB, Silver MR, Rault R, Sorkin MI, Puschett JB, Juhl RP "Effects of end stage renal disease and aluminium hydroxide on triazolam pharmacokinetics." Br J Clin Pharmacol 19 (1985): 839-42
  8. Shader RI, Ciraulo DA, Greenblatt DJ, Harmatz JS "Steady-state plasma desmethyldiazepam during long-term clorazepate use: effects of antacids." Clin Pharmacol Ther 31 (1982): 180-3
  9. Greenblatt DJ, Shader RI, Harmatz JS, Franke K, Koch-Weser J "Influence of magnesium and aluminum hydroxide mixture on chlordiazepoxide absorption." Clin Pharmacol Ther 19 (1976): 234-9
View all 9 references

Switch to consumer interaction data

Minor

chlordiazePOXIDE aluminum hydroxide

Applies to: Mitran (chlordiazepoxide) and aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide

A number of studies have reported that antacids can delay the gastrointestinal absorption and reduce the peak plasma concentration (Cmax) of some benzodiazepines, including clorazepate, chlordiazepoxide and diazepam, although the overall extent of absorption is generally not affected. The exact mechanism of interaction is unknown, but may involve delayed gastric emptying or cation binding of the benzodiazepine. As a result, benzodiazepine onset of action may be delayed and clinical effects diminished. However, one study reported a significant increase in diazepam absorption during coadministration with aluminum hydroxide, and there was a marginal increase in the onset of sedative effect. Aluminum hydroxide also increased triazolam Cmax and systemic exposure (AUC) in 11 dialysis patients such that their drug levels reached into the range observed for the matched controls. In contrast, another study by the same group of investigators found no significant effect of aluminum hydroxide on temazepam absorption or Cmax in 11 patients with end-stage renal disease. A multi-dose study also failed to find an effect of antacids on the steady-state levels of N-desmethyldiazepam, the active metabolite of clorazepate, although an acidic environment is thought to be necessary for the rapid conversion. Based on available data, the clinical significance of this interaction appears to be minor. As a precaution, patients may consider separating the administration times of benzodiazepines and antacids or other oral medications that contain antacids (e.g., didanosine buffered tablets or pediatric oral solution) by 2 to 3 hours.

References

  1. Chun AH, Carrigan PJ, Hoffman DJ, Kershner RP, Stuart JD "Effect of antacids on absorption of clorazepate." Clin Pharmacol Ther 22 (1977): 329-35
  2. Nair SG, Gamble JA, Dundee JW, Howard PJ "The influence of three antacids on the absorption and clinical action of oral diazepam." Br J Anaesth 48 (1976): 1175-80
  3. Greenblatt DJ, Shader RI, Harmatz JS, Franke K, Koch-Weser J "Absorption rate, blood concentrations, and early response to oral chlordiazepoxide." Am J Psychiatry 134 (1977): 559-62
  4. Greenblatt DJ, Allen MD, MacLaughlin DS, Harmatz JS, Shader RI "Diazepam absorption: effect of antacids and food." Clin Pharmacol Ther 24 (1978): 600-9
  5. Shader RI, Georgotas A, Greenblatt DJ, Harmatz JS, Allen MD "Impaired absorption of desmethyldiazepam from clorazepate by magnesium aluminum hydroxide." Clin Pharmacol Ther 24 (1978): 308-15
  6. Kroboth PD, Smith RB, Rault R, Silver MR, Sorkin MI, Puschett JB, Juhl RP "Effects of end-stage renal disease and aluminum hydroxide on temazepam kinetics." Clin Pharmacol Ther 37 (1985): 453-9
  7. Kroboth PD, Smith RB, Silver MR, Rault R, Sorkin MI, Puschett JB, Juhl RP "Effects of end stage renal disease and aluminium hydroxide on triazolam pharmacokinetics." Br J Clin Pharmacol 19 (1985): 839-42
  8. Shader RI, Ciraulo DA, Greenblatt DJ, Harmatz JS "Steady-state plasma desmethyldiazepam during long-term clorazepate use: effects of antacids." Clin Pharmacol Ther 31 (1982): 180-3
  9. Greenblatt DJ, Shader RI, Harmatz JS, Franke K, Koch-Weser J "Influence of magnesium and aluminum hydroxide mixture on chlordiazepoxide absorption." Clin Pharmacol Ther 19 (1976): 234-9
View all 9 references

Switch to consumer interaction data

Minor

chlordiazePOXIDE magnesium hydroxide

Applies to: Mitran (chlordiazepoxide) and aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide

A number of studies have reported that antacids can delay the gastrointestinal absorption and reduce the peak plasma concentration (Cmax) of some benzodiazepines, including clorazepate, chlordiazepoxide and diazepam, although the overall extent of absorption is generally not affected. The exact mechanism of interaction is unknown, but may involve delayed gastric emptying or cation binding of the benzodiazepine. As a result, benzodiazepine onset of action may be delayed and clinical effects diminished. However, one study reported a significant increase in diazepam absorption during coadministration with aluminum hydroxide, and there was a marginal increase in the onset of sedative effect. Aluminum hydroxide also increased triazolam Cmax and systemic exposure (AUC) in 11 dialysis patients such that their drug levels reached into the range observed for the matched controls. In contrast, another study by the same group of investigators found no significant effect of aluminum hydroxide on temazepam absorption or Cmax in 11 patients with end-stage renal disease. A multi-dose study also failed to find an effect of antacids on the steady-state levels of N-desmethyldiazepam, the active metabolite of clorazepate, although an acidic environment is thought to be necessary for the rapid conversion. Based on available data, the clinical significance of this interaction appears to be minor. As a precaution, patients may consider separating the administration times of benzodiazepines and antacids or other oral medications that contain antacids (e.g., didanosine buffered tablets or pediatric oral solution) by 2 to 3 hours.

References

  1. Chun AH, Carrigan PJ, Hoffman DJ, Kershner RP, Stuart JD "Effect of antacids on absorption of clorazepate." Clin Pharmacol Ther 22 (1977): 329-35
  2. Nair SG, Gamble JA, Dundee JW, Howard PJ "The influence of three antacids on the absorption and clinical action of oral diazepam." Br J Anaesth 48 (1976): 1175-80
  3. Greenblatt DJ, Shader RI, Harmatz JS, Franke K, Koch-Weser J "Absorption rate, blood concentrations, and early response to oral chlordiazepoxide." Am J Psychiatry 134 (1977): 559-62
  4. Greenblatt DJ, Allen MD, MacLaughlin DS, Harmatz JS, Shader RI "Diazepam absorption: effect of antacids and food." Clin Pharmacol Ther 24 (1978): 600-9
  5. Shader RI, Georgotas A, Greenblatt DJ, Harmatz JS, Allen MD "Impaired absorption of desmethyldiazepam from clorazepate by magnesium aluminum hydroxide." Clin Pharmacol Ther 24 (1978): 308-15
  6. Kroboth PD, Smith RB, Rault R, Silver MR, Sorkin MI, Puschett JB, Juhl RP "Effects of end-stage renal disease and aluminum hydroxide on temazepam kinetics." Clin Pharmacol Ther 37 (1985): 453-9
  7. Kroboth PD, Smith RB, Silver MR, Rault R, Sorkin MI, Puschett JB, Juhl RP "Effects of end stage renal disease and aluminium hydroxide on triazolam pharmacokinetics." Br J Clin Pharmacol 19 (1985): 839-42
  8. Shader RI, Ciraulo DA, Greenblatt DJ, Harmatz JS "Steady-state plasma desmethyldiazepam during long-term clorazepate use: effects of antacids." Clin Pharmacol Ther 31 (1982): 180-3
  9. Greenblatt DJ, Shader RI, Harmatz JS, Franke K, Koch-Weser J "Influence of magnesium and aluminum hydroxide mixture on chlordiazepoxide absorption." Clin Pharmacol Ther 19 (1976): 234-9
View all 9 references

Switch to consumer interaction data

Drug and food interactions

Major

aluminum hydroxide food

Applies to: aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide

GENERALLY AVOID: The concomitant administration of aluminum-containing products (e.g., antacids and phosphate binders) and citrates may significantly increase serum aluminum concentrations, resulting in toxicity. Citrates or citric acid are contained in numerous soft drinks, citrus fruits, juices, and effervescent and dispersible drug formulations. Citrates enhance the gastrointestinal absorption of aluminum by an unknown mechanism, which may involve the formation of a soluble aluminum-citrate complex. Various studies have reported that citrate increases aluminum absorption by 4.6- to 50-fold in healthy subjects. Patients with renal insufficiency are particularly at risk of developing hyperaluminemia and encephalopathy. Fatalities have been reported. Patients with renal failure or on hemodialysis may also be at risk from soft drinks and effervescent and dispersible drug formulations that contain citrates or citric acid. It is unknown what effect citrus fruits or juices would have on aluminum absorption in healthy patients.

MANAGEMENT: The concomitant use of aluminum- and citrate-containing products and foods should be avoided by renally impaired patients. Hemodialysis patients should especially be cautioned about effervescent and dispersible over-the-counter remedies and soft drinks. Some experts also recommend that healthy patients should separate doses of aluminum-containing antacids and citrates by 2 to 3 hours.

ADJUST DOSING INTERVAL: The administration of aluminum-containing antacids with enteral nutrition may result in precipitation, formation of bezoars, and obstruction of feeding tubes. The proposed mechanism is the formation of an insoluble complex between the aluminum and the protein in the enteral feeding. Several cases of esophageal plugs and nasogastric tube obstructions have been reported in patients receiving high-protein liquids and an aluminum hydroxide-magnesium hydroxide antacid or an aluminum hydroxide antacid.

MANAGEMENT: Some experts recommend that antacids should not be mixed with or given after high protein formulations, that the antacid dose should be separated from the feeding by as much as possible, and that the tube should be thoroughly flushed before administration.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  2. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm 66 (2009): 1438-67

Switch to consumer interaction data

Moderate

chlordiazePOXIDE food

Applies to: Mitran (chlordiazepoxide)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology 15 (1986): 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc. (1990):
  3. "Product Information. Fycompa (perampanel)." Eisai Inc (2012):
  4. "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc (2015):
View all 4 references

Switch to consumer interaction data

Moderate

calcium carbonate food

Applies to: aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  2. Canadian Pharmacists Association "e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink" (2006):
  3. Cerner Multum, Inc. "Australian Product Information." O 0
  4. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare "Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html" (2008):
  5. Mangels AR "Bone nutrients for vegetarians." Am J Clin Nutr 100 (2014): epub
  6. Davies NT "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc 38 (1979): 121-8
View all 6 references

Switch to consumer interaction data

Moderate

aspirin food

Applies to: aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn PROD (2002):

Switch to consumer interaction data

Minor

aspirin food

Applies to: aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet 11 (1986): 71-6

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.