Skip to main content

Drug Interactions between acetaminophen / caffeine / chlorpheniramine / phenylpropanolamine and Raxar

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

phenylpropanolamine caffeine

Applies to: acetaminophen / caffeine / chlorpheniramine / phenylpropanolamine and acetaminophen / caffeine / chlorpheniramine / phenylpropanolamine

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Moderate

caffeine grepafloxacin

Applies to: acetaminophen / caffeine / chlorpheniramine / phenylpropanolamine and Raxar (grepafloxacin)

MONITOR: Coadministration with certain quinolones may increase the plasma concentrations and pharmacologic effects of caffeine due to inhibition of the CYP450 1A2 metabolism of caffeine. Quinolones that may inhibit CYP450 1A2 include ciprofloxacin, enoxacin, grepafloxacin, nalidixic acid, norfloxacin, pipemidic acid, and pefloxacin (not all commercially available). In healthy volunteers, enoxacin (100 to 400 mg twice daily) increased systemic exposure (AUC) of caffeine by 2- to 5-fold and reduced its clearance by approximately 80%. Pipemidic acid (400 to 800 mg twice daily) increased AUC of caffeine by 2- to 3-fold and reduced its clearance by approximately 60%. Ciprofloxacin (250 to 750 mg twice daily) increased AUC and elimination half-life of caffeine by 50% to over 100%, and reduced its clearance by 30% to 50%. Norfloxacin 400 mg twice daily increased caffeine AUC by 16%, while 800 mg twice daily increased caffeine AUC by 52% and reduced its clearance by 35%. Pefloxacin (400 mg twice daily) has been shown to reduce caffeine clearance by 47%.

MANAGEMENT: Patients using caffeine-containing products should be advised that increased adverse effects such as headache, tremor, restlessness, nervousness, insomnia, tachycardia, and blood pressure increases may occur during coadministration with quinolones that inhibit CYP450 1A2. Caffeine intake should be limited when taking high dosages of these quinolones. If an interaction is suspected, other quinolones such as gatifloxacin, gemifloxacin, levofloxacin, lomefloxacin, moxifloxacin, and ofloxacin may be considered, since they are generally believed to have little or no effect on CYP450 1A2 or have been shown not to interact with caffeine.

References

  1. Polk RE (1989) "Drug-drug interactions with ciprofloxacin and other fluoroquinolones." Am J Med, 87, s76-81
  2. Healy DP, Polk RE, Kanawati L, Rock DT, Mooney ML (1989) "Interaction between oral ciprofloxacin and caffeine in normal volunteers." Antimicrob Agents Chemother, 33, p. 474-8
  3. Harder S, Fuhr U, Staib AH, Wolf T (1989) "Ciprofloxacin-caffeine: a drug interaction established using in vivo and in vitro investigations." Am J Med, 87, p. 89-91
  4. Carbo ML, Segura J, De la Torre R, et al. (1989) "Effect of quinolones on caffeine disposition." Clin Pharmacol Ther, 45, p. 234-40
  5. (1993) "Product Information. Penetrax (enoxacin)." Rhone-Poulenc Rorer, Collegeville, PA.
  6. Mahr G, Sorgel F, Granneman GR, et al. (1992) "Effects of temafloxacin and ciprofloxacin on the pharmacokinetics of caffeine." Clin Pharmacokinet, 22, p. 90-7
  7. (2002) "Product Information. Cipro (ciprofloxacin)." Bayer
  8. (2001) "Product Information. Noroxin (norfloxacin)." Merck & Co., Inc
  9. Staib AH, Stille W, Dietlein G, et al. (1987) "Interaction between quinolones and caffeine." Drugs, 34 Suppl 1, p. 170-4
  10. Stille W, Harder S, Micke S, et al. (1987) "Decrease of caffeine elimination in man during co-administration of 4-quinolones." J Antimicrob Chemother, 20, p. 729-34
  11. Harder S, Staib AH, Beer C, Papenburg A, Stille W, Shah PM (1988) "4-Quinolones inhibit biotransformation of caffeine." Eur J Clin Pharmacol, 35, p. 651-6
  12. Nicolau DP, Nightingale CH, Tessier PR, et al. (1995) "The effect of fleroxacin and ciprofloxacin on the pharmacokinetics of multiple dose caffeine." Drugs, 49 Suppl 2, p. 357-9
  13. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  14. Carrillo JA, Benitez J (2000) "Clinically significant pharmacokinetic interactions between dietary caffeine and medications." Clin Pharmacokinet, 39, p. 127-53
  15. Fuhr U, Wolff T, Harder S, Schymanski P, Staib AH (1990) "Quinolone inhibition of cytochrome P-450 dependent caffeine metabolism in human liver microsomes." Drug Metab Dispos, 18, p. 1005-10
  16. Kinzig-Schippers M, Fuhr U, Zaigler M, et al. (1999) "Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2." Clin Pharmacol Ther, 65, p. 262-74
  17. Healy DP, Schoenle JR, Stotka J, Polk RE (1991) "Lack of interaction between lomefloxacin and caffeine in normal volunteers." Antimicrob Agents Chemother, 35, p. 660-4
View all 17 references

Switch to consumer interaction data

Drug and food interactions

Major

acetaminophen food

Applies to: acetaminophen / caffeine / chlorpheniramine / phenylpropanolamine

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
  4. Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
  6. Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
  7. Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
  8. (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
  9. Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
  10. Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
  11. Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
  12. Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
View all 12 references

Switch to consumer interaction data

Moderate

chlorpheniramine food

Applies to: acetaminophen / caffeine / chlorpheniramine / phenylpropanolamine

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

phenylpropanolamine food

Applies to: acetaminophen / caffeine / chlorpheniramine / phenylpropanolamine

GENERALLY AVOID: Alcohol may potentiate the central nervous system and cardiovascular effects of centrally-acting appetite suppressants. In one study, concurrent administration of methamphetamine (30 mg intravenously) and ethanol (1 gm/kg orally over 30 minutes) increased heart rate by 24 beats/minute compared to methamphetamine alone. This increases cardiac work and myocardial oxygen consumption, which may lead to more adverse cardiovascular effects than either agent alone. Subjective effects of ethanol were diminished in the eight study subjects, but those of methamphetamine were not affected. The pharmacokinetics of methamphetamine were also unaffected except for a decrease in the apparent volume of distribution at steady state.

MANAGEMENT: Concomitant use of centrally-acting appetite suppressants and alcohol should be avoided if possible, especially in patients with a history of cardiovascular disease. Patients should be counselled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Mendelson J, Jones RT, Upton R, Jacob P 3rd (1995) "Methamphetamine and ethanol interactions in humans." Clin Pharmacol Ther, 57, p. 559-68
  2. (2001) "Product Information. Didrex (benzphetamine)." Pharmacia and Upjohn
  3. (2012) "Product Information. Suprenza (phentermine)." Akrimax Pharmaceuticals

Switch to consumer interaction data

Moderate

phenylpropanolamine food

Applies to: acetaminophen / caffeine / chlorpheniramine / phenylpropanolamine

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Minor

caffeine food

Applies to: acetaminophen / caffeine / chlorpheniramine / phenylpropanolamine

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References

  1. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR (1996) "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy, 16, p. 1046-52

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.