Midazolam Injection

Pronunciation

Generic Name: midazolam hydrochloride
Dosage Form: injection, solution

Midazolam Injection CIV
Preservative-Free

Rx Only

WARNING

Adult and Pediatric: Intravenous midazolam has been associated with respiratory depression and respiratory arrest, especially when used for sedation in noncritical care settings. In some cases, where this was not recognized promptly and treated effectively, death or hypoxic encephalopathy has resulted. Intravenous midazolam should be used only in hospital or ambulatory care settings, including physicians and dental offices that provide for continuous monitoring of respiratory and cardiac function, i.e. pulse oximetry. Immediate availability of resuscitative drugs and age- and size-appropriate equipment for bag/valve/mask ventilation and intubation, and personnel trained in their use and skilled in airway management should be assured (see WARNINGS). For deeply sedated pediatric patients, a dedicated individual, other than the practitioner performing the procedure, should monitor the patient throughout the procedure.

The initial intravenous dose for sedation in adult patients may be as little as 1 mg, but should not exceed 2.5 mg in a normal healthy adult. Lower doses are necessary for older (over 60 years) or debilitated patients and in patients receiving concomitant narcotics or other central nervous system (CNS) depressants. The initial dose and all subsequent doses should always be titrated slowly; administer over at least 2 minutes and allow an additional 2 or more minutes to fully evaluate the sedative effect. The use of the 1 mg/mL formulation or dilution of the 1 mg/mL or 5 mg/mL formulation is recommended to facilitate slower injection. Doses of sedative medications in pediatric patients must be calculated on a mg/kg basis, and initial doses and all subsequent doses should always be titrated slowly. The initial pediatric dose of midazolam for sedation/anxiolysis/amnesia is age, procedure and route dependent (see DOSAGE AND ADMINISTRATION for complete dosing information).

Neonates: Midazolam should not be administered by rapid injection in the neonatal population. Severe hypotension and seizures have been reported following rapid IV administration, particularly with concomitant use of fentanyl (see DOSAGE AND ADMINISTRATION for complete information).

DESCRIPTION

Midazolam hydrochloride is a water-soluble benzodiazepine available as a sterile, nonpyrogenic parenteral dosage form for intravenous or intramuscular injection. Each mL contains midazolam hydrochloride equivalent to 1 mg or 5 mg midazolam compounded with 0.8% sodium chloride. The pH is approximately 2.5 to 3.7 and is adjusted with hydrochloric acid and, if necessary, sodium hydroxide.

Midazolam is a white to light yellow crystalline compound, insoluble in water. The hydrochloride salt of midazolam, which is formed in situ, is soluble in aqueous solutions. Chemically, midazolam HCl is 8-chloro-6-(2-fluorophenyl)-1-methyl-4H-imidazo[1,5-a] [1,4] benzodiazepine hydrochloride. Midazolam hydrochloride has the chemical formula C18H13CIFN3HCl, a calculated molecular weight of 362.25 and the following structural formula:

Slideshow: Viagra: 11 Interesting Facts That You Can't Help But Be Amazed By

Under the acidic conditions required to solubilize midazolam in the product, midazolam is present as an equilibrium mixture (shown below) of the closed ring form shown above and an open-ring structure formed by the acid-catalyzed ring opening of the 4,5-double bond of the diazepine ring. The amount of open-ring form is dependent upon the pH of the solution. At the specified pH of the product, the solution may contain up to about 25% of the openring compound. At the physiologic conditions under which the product is absorbed (pH of 5 to 8) into the systemic circulation, any open-ring form present reverts to the physiologically, active, lipophilic, closed-ring form (midazolam) and is absorbed as such.

The following chart plots the percentage of midazolam present as the open-ring form as a function of pH in aqueous solutions. As indicated in the graph, the amount of open-ring compound present in solution is sensitive to changes in pH over the pH range specified for the product: 3.0 to 4.0 for the 1 mg/mL concentration and 3.0 to 3.6 for the 5 mg/mL concentration. Above pH 5, at least 99% of the mixture is present in the closed-ring form.

CLINICAL PHARMACOLOGY

Midazolam is a short-acting benzodiazepine central nervous system (CNS) depressant.

The effects of midazolam on the CNS are dependent on the dose administered, the route of administration, and the presence or absence of other medications. Onset time of sedation effects after IM administration in adults is 15 minutes, with peak sedation occurring 30 to 60 minutes following injection. In one adult study, when tested the following day, 73% of the patients who received midazolam intramuscularly had no recall of memory cards shown 30 minutes following drug administration; 40% had no recall of the memory cards shown 60 minutes following drug administration. Onset time of sedation effects in the pediatric population begins within 5 minutes and peaks at 15 to 30 minutes depending upon the dose administered. In pediatric patients, up to 85% had no recall of pictures shown after receiving intramuscular midazolam compared with 5% of the placebo controls.

Sedation in adult and pediatric patients is achieved within 3 to 5 minutes after intravenous (IV) injection; the time of onset is affected by total dose administered and the concurrent administration of narcotic premedication. Seventy-one percent of the adult patients in endoscopy studies had no recall of introduction of the endoscope; 82% of the patients had no recall of withdrawal of the endoscope. In one study of pediatric patients undergoing lumbar puncture or bone marrow aspiration, 88% of patients had impaired recall vs 9% of the placebo controls. In another pediatric oncology study, 91% of midazolam treated patients were amnestic compared with 35% of patients who had received fentanyl alone.

When midazolam is given IV as an anesthetic induction agent, induction of anesthesia occurs in approximately 1.5 minutes when narcotic premedication has been administered and in 2 to 2.5 minutes without narcotic premedication or other sedative premedication. Some impairment in a test of memory was noted in 90% of the patients studied. A dose response study of pediatric patients premedicated with 1.0 mg/kg intramuscular (IM) meperidine found that only 4 out of 6 pediatric patients who received 600 mcg/kg IV midazolam lost consciousness, with eye closing at 108 ± 140 seconds. This group was compared with pediatric patients who were given thiopental 5 mg/kg IV; 6 out of 6 closed their eyes at 20 ± 3.2 seconds. Midazolam did not dependably induce anesthesia at this dose despite concomitant opioid administration in pediatric patients.

Midazolam, used as directed, does not delay awakening from general anesthesia in adults. Gross tests of recovery after awakening (orientation, ability to stand and walk, suitability for discharge from the recovery room, return to baseline Trieger competency) usually indicate recovery within 2 hours but recovery may take up to 6 hours in some cases. When compared with patients who received thiopental, patients who received midazolam generally recovered at a slightly slower rate. Recovery from anesthesia or sedation for procedures in pediatric patients depends on the dose of midazolam administered, coadministration of other medications causing CNS depression and duration of the procedure.

In patients without intracranial lesions, induction of general anesthesia with IV midazolam is associated with a moderate decrease in cerebrospinal fluid pressure (lumbar puncture measurements), similar to that observed following IV thiopental. Preliminary data in neurosurgical patients with normal intracranial pressure but decreased compliance (subarachnoid screw measurements) show comparable elevations of intracranial pressure with midazolam and with thiopental during intubation. No similar studies have been reported in pediatric patients.

The usual recommended intramuscular premedicating doses of midazolam do not depress the ventilatory response to carbon dioxide stimulation to a clinically significant extent in adults. Intravenous induction doses of midazolam depress the ventilatory response to carbon dioxide stimulation for 15 minutes or more beyond the duration of ventilatory depression following administration of thiopental in adults. Impairment of ventilatory response to carbon dioxide is more marked in adult patients with chronic obstructive pulmonary disease (COPD). Sedation with IV midazolam does not adversely affect the mechanics of respiration (resistance, static recoil, most lung volume measurements); total lung capacity and peak expiratory flow decrease significantly but static compliance and maximum expiratory flow at 50% of awake total lung capacity (Vmax) increase. In one study of pediatric patients under general anesthesia, intramuscular midazolam (100 to 200 mcg/kg) was shown to depress the response to carbon dioxide in a dose-related manner.

In cardiac hemodynamic studies in adults, IV induction of general anesthesia with midazolam was associated with a slight to moderate decrease in mean arterial pressure, cardiac output, stroke volume and systemic vascular resistance. Slow heart rates (less than 65/minute), particularly in patients taking propranolol for angina, tended to rise slightly; faster heart rates (e.g. 85/minute) tended to slow slightly. In pediatric patients, a comparison of IV midazolam (500 mcg/kg) with propofol (2.5 mg/kg) revealed a mean 15% decrease in systolic blood pressure in patients who had received IV midazolam vs a mean 25% decrease in systolic blood pressure following propofol.

Pharmacokinetics:

Midazolam's activity is primarily due to the parent drug. Elimination of the parent drug takes place via hepatic metabolism of midazolam to hydroxylated metabolites that are conjugated and excreted in the urine. Six single-dose pharmacokinetic studies involving healthy adults yield pharmacokinetic parameters for midazolam in the following ranges: volume of distribution (Vd), 1.0 to 3.1 L/kg; elimination half-life, 1.8 to 6.4 hours (mean approximately 3 hours); total clearance (Cl), 0.25 to 0.54 L/hr/kg. In a parallel group study, there was no difference in the clearance, in subjects administered 0.15 mg/kg (n = 4) and 0.30 mg/kg (n = 4) IV doses indicating linear kinetics. The clearance was successively reduced by approximately 30% at doses of 0.45 mg/kg (n = 4) and 0.6 mg/kg (n = 5) indicating nonlinear kinetics in this dose range.

Absorption: The absolute bioavailability of the intramuscular route was greater than 90% in a cross-over study in which healthy subjects (n = 17) were administered a 7.5 mg IV or IM dose. The mean peak concentration (Cmax) and time to peak (Tmax) following the IM dose was 90 ng/mL (20% CV) and 0.5 hr (50% CV). Cmax for the 1-hydroxy metabolite following the IM dose was 8 ng/mL (Tmax = 1.0 hr).

Following IM administration, Cmax for midazolam and its 1-hydroxy metabolite were approximately one-half of those achieved after intravenous injection.

Distribution: The volume of distribution (Vd) determined from six single-dose pharmacokinetic studies involving healthy adults ranged from 1.0 – 3.1 L/kg. Female gender, old age, and obesity are associated with increased values of midazolam Vd. In humans, midazolam has been shown to cross the placenta and enter into fetal circulation and has been detected in human milk and CSF (see CLINICAL PHARMACOLOGY, Special Populations).

In adults and children older than 1 year, midazolam is approximately 97% bound to plasma protein, principally albumin.

Metabolism: In vitro studies with human liver microsomes indicate that the biotransformation of midazolam is mediated by cytochrome P450-3A4. This cytochrome also appears to be present in gastrointestinal tract mucosa as well as liver. Sixty to seventy percent of the biotransformation products is 1-hydroxy-midazolam (also termed alpha-hydroxymidazolam) while 4-hydroxy-midazolam constitutes 5% or less. Small amounts of a dihydroxy derivative have also been detected but not quantified. The principal urinary excretion products are glucuronide conjugates of the hydroxylated derivatives.

Drugs that inhibit the activity of cytochrome P450-3A4 may inhibit midazolam clearance and elevate steady-state midazolam concentrations.

Studies of the intravenous administration of 1-hydroxy-midazolam in humans suggest that 1-hydroxy-midazolam is at least as potent as the parent compound and may contribute to the net pharmacologic activity of midazolam. In vitro studies have demonstrated that the affinities of 1- and 4-hydroxymidazolam for the benzodiazepine receptor are approximately 20% and 7%, respectively, relative to midazolam.

Excretion: Clearance of midazolam is reduced in association with old age, congestive heart failure, liver disease (cirrhosis) or conditions which diminish cardiac output and hepatic blood flow.

The principal urinary excretion product is 1-hydroxy-midazolam in the form of a glucuronide conjugate; smaller amounts of the glucuronide conjugates of 4-hydroxy- and dihydroxymidazolam are detected as well. The amount of midazolam excreted unchanged in the urine after a single IV dose is less than 0.5% (n=5). Following a single IV infusion in 5 healthy volunteers, 45% to 57% of the dose was excreted in the urine as 1-hydroxymethyl midazolam conjugate.

Pharmacokinetics-continuous infusion: The pharmacokinetic profile of midazolam following continuous infusion, based on 282 adult subjects, has been shown to be similar to that following single-dose administration for subjects of comparable age, gender, body habitus and health status.

However, midazolam can accumulate in peripheral tissues with continuous infusion. The effects of accumulation are greater after long-term infusions than after short-term infusions. The effects of accumulation can be reduced by maintaining the lowest midazolam infusion rate that produces satisfactory sedation.

Infrequent hypotensive episodes have occurred during continuous infusion; however, neither the time to onset nor the duration of the episode appeared to be related to plasma concentrations of midazolam or alpha-hydroxy-midazolam. Further, there does not appear to be an increased chance of occurrence of a hypotensive episode with increased loading doses.

Patients with renal impairment may have longer elimination half-lives for midazolam (see CLINICAL PHARMACOLOGY, Special Populations: Renal Failure).

Special Populations:

Changes in the pharmacokinetic profile of midazolam due to drug interactions, physiological variables, etc., may result in changes in the plasma concentration-time profile and pharmacological response to midazolam in these patients. For example, patients with acute renal failure appear to have a longer elimination half-life for midazolam and may experience delayed recovery (see CLINICAL PHARMACOLOGY, Special Populations: Renal Failure). In other groups, the relationship between prolonged half-life and duration of effect has not been established.

Pediatrics and Neonates: In pediatric patients aged 1 year and older, the pharmacokinetic properties following a single dose of midazolam reported in 10 separate studies of midazolam are similar to those in adults. Weight-normalized clearance is similar or higher (0.19 to 0.80 L/hr/kg) than in adults and the terminal elimination half-life (0.78 to 3.3 hours) is similar to or shorter than in adults. The pharmacokinetic properties during and following continuous intravenous infusion in pediatric patients in the operating room as an adjunct to general anesthesia and in the intensive care environment are similar to those in adults.

In seriously ill neonates, however, the terminal elimination half-life of midazolam is substantially prolonged (6.5 to 12.0 hours) and the clearance reduced (0.07 to 0.12 L/hr/kg) compared to healthy adults or other groups of pediatric patients. It cannot be determined if these differences are due to age, immature organ function or metabolic pathways, underlying illness or debility.

Obese: In a study comparing normals (n = 20) and obese patients (n = 20) the mean half-life was greater in the obese group (5.9 vs. 2.3 hrs). This was due to an increase of approximately 50% in the Vd corrected for total body weight. The clearance was not significantly different between groups.

Geriatric: In three parallel group studies, the pharmacokinetics of midazolam administered IV or IM were compared in young (mean age 29, n=52) and healthy elderly subjects (mean age 73, n=53). Plasma half-life was approximately two-fold higher in the elderly. The mean Vd based on total body weight increased consistently between 15% to 100% in the elderly. The mean Cl decreased approximately 25% in the elderly in two studies and was similar to that of the younger patients in the other.

Congestive Heart Failure: In patients suffering from congestive heart failure, there appeared to be a two-fold increase in the elimination half-life, a 25% decrease in the plasma clearance and a 40% increase in the volume of distribution of midazolam.

Hepatic Insufficiency: Midazolam pharmacokinetics were studied after an IV single dose (0.075 mg/kg) was administered to 7 patients with biopsy proven alcoholic cirrhosis and 8 control patients. The mean half-life of midazolam increased 2.5-fold in the alcoholic patients. Clearance was reduced by 50% and the Vd increased by 20%. In another study in 21 male patients with cirrhosis, without ascites and with normal kidney function as determined by creatinine clearance, no changes in the pharmacokinetics of midazolam or 1-hydroxy-midazolam were observed when compared to healthy individuals.

Renal Failure: Patients with renal impairment may have longer elimination half-lives for midazolam and its metabolites which may result in slower recovery.

Midazolam and 1-hydroxy-midazolam pharmacokinetics in 6 ICU patients who developed acute renal failure (ARF) were compared with a normal renal function control group. Midazolam was administered as an infusion (5 to 15 mg/hr). Midazolam clearance was reduced (1.9 vs 2.8 mL/min/kg) and the half-life was prolonged (7.6 vs 13 hr) in the ARF patients. The renal clearance of the 1-hydroxy-midazolam glucuronide was prolonged in the ARF group (4 vs 136 mL/min) and the half-life was prolonged (12 hr vs > 25 hr). Plasma levels accumulated in all ARF patients to about ten times that of the parent drug. The relationship between accumulating metabolite levels and prolonged sedation is unclear.

In a study of chronic renal failure patients (n=15) receiving a single IV dose, there was a twofold increase in the clearance and volume of distribution but the half-life remained unchanged. Metabolite levels were not studied.

Plasma Concentration-Effect Relationship: Concentration-effect relationships (after an IV dose) have been demonstrated for a variety of pharmacodynamic measures (e.g., reaction time, eye movement, sedation) and are associated with extensive intersubject variability. Logistic regression analysis of sedation scores and steady-state plasma concentration indicated that at plasma concentrations greater than 100 ng/mL there was at least a 50% probability that patients would be sedated, but respond to verbal commands (sedation score = 3). At 200 ng/mL there was at least a 50% probability that patients would be asleep, but respond to glabellar tap (sedation score = 4).

Drug Interactions: For information concerning pharmacokinetic drug interactions with midazolam, see PRECAUTIONS.

INDICATIONS AND USAGE

Midazolam Injection is indicated:

  • intramuscularly or intravenously for preoperative sedation/anxiolysis/amnesia;
  • intravenously as an agent for sedation/anxiolysis/amnesia prior to or during diagnostic, therapeutic or endoscopic procedures, such as bronchoscopy, gastroscopy, cystoscopy, coronary angiography, cardiac catheterization, oncology procedures, radiologic procedures, suture of lacerations and other procedures either alone or in combination with other CNS depressants;
  • intravenously for induction of general anesthesia, before administration of other anesthetic agents. With the use of narcotics premedication, induction of anesthesia can be attained within a relatively narrow dose range and in a short period of time. Intravenous midazolam can also be used as a component of intravenous supplementation of nitrous oxide and oxygen (balanced anesthesia);
  • continuous intravenous infusion for sedation of intubated and mechanically ventilated patients as a component of anesthesia or during treatment in a critical care setting.

Midazolam is associated with a high incidence of partial or complete impairment of recall for the next several hours (see CLINICAL PHARMACOLOGY).

CONTRAINDICATIONS

Injectable midazolam is contraindicated in patients with a known hypersensitivity to the drug. Benzodiazepines are contraindicated in patients with acute narrow-angle glaucoma. Benzodiazepines may be used in patients with open-angle glaucoma only if they are receiving appropriate therapy. Measurements of intraocular pressure in patients without eye disease show a moderate lowering following induction with midazolam; patients with glaucoma have not been studied.

WARNINGS

Midazolam must never be used without individualization of dosage particularly when used with other medications capable of producing central nervous system depression. Prior to the intravenous administration of midazolam in any dose, the immediate availability of oxygen, resuscitative drugs, age- and size-appropriate equipment for bag/valve/mask ventilation and intubation, and skilled personnel for the maintenance of a patent airway and support of ventilation should be ensured. Patients should be continuously monitored with some means of detection for early signs of hypoventilation, airway obstruction, or apnea i.e., pulse oximetry. Hypoventilation, airway obstruction, and apnea can lead to hypoxia and/or cardiac arrest unless effective countermeasures are taken immediately. The immediate availability of specific reversal agents (flumazenil) is highly recommended. Vital signs should continue to be monitored during the recovery period. Because intravenous midazolam depresses respiration (see CLINICAL PHARMACOLOGY) and because opioid agonists and other sedatives can add to this depression, midazolam should be administered as an induction agent only by a person trained in general anesthesia and should be used for sedation/ anxiolysis/amnesia only in the presence of personnel skilled in early detection of hypoventilation, maintaining a patent airway and supporting ventilation. When used for sedation/ anxiolysis/amnesia, midazolam should always be titrated slowly in adult or pediatric patients. Adverse hemodynamic events have been reported in pediatric patients with cardiovascular instability; rapid intravenous administration should also be avoided in this population. See DOSAGE AND ADMINISTRATION for complete information.

Serious cardiorespiratory adverse events have occurred after administration of midazolam. These have included respiratory depression, airway obstruction, oxygen desaturation, apnea, respiratory arrest and/or cardiac arrest, sometimes resulting in death or permanent neurologic injury. There have also been rare reports of hypotensive episodes requiring treatment during or after diagnostic or surgical manipulations particularly in adult or pediatric patients with hemodynamic instability. Hypotension occurred more frequently in the sedation studies in patients premedicated with a narcotic.

Reactions such as agitation, involuntary movements (including tonic/clonic movements and muscle tremor), hyperactivity and combativeness have been reported in both adult and pediatric patients. These reactions may be due to inadequate or excessive dosing or improper administration of midazolam; however, consideration should be given to the possibility of cerebral hypoxia or true paradoxical reactions. Should such reactions occur, the response to each dose of midazolam and all other drugs, including local anesthetics, should be evaluated before proceeding. Reversal of such responses with flumazenil has been reported in pediatric patients.

Concomitant use of barbiturates, alcohol or other central nervous system depressants may increase the risk of hypoventilation, airway obstruction, desaturation, or apnea and may contribute to profound and/or prolonged drug effect. Narcotic premedication also depresses the ventilatory response to carbon dioxide stimulation.

Higher risk adult and pediatric surgical patients, elderly patients and debilitated adult and pediatric patients require lower dosages, whether or not concomitant sedating medications have been administered. Adult or pediatric patients with COPD are unusually sensitive to the respiratory depressant effect of midazolam. Pediatric and adult patients undergoing procedures involving the upper airway such as upper endoscopy or dental care are particularly vulnerable to episodes of desaturation and hypoventilation due to partial airway obstruction. Adult and pediatric patients with chronic renal failure and patients with congestive heart failure eliminate midazolam more slowly (see CLINICAL PHARMACOLOGY). Because elderly patients frequently have inefficient function of one or more organ systems and because dosage requirements have been shown to decrease with age, reduced initial dosage of midazolam is recommended, and the possibility of profound and/or prolonged effect should be considered.

Injectable midazolam should not be administered to adult or pediatric patients in shock or coma, or in acute alcohol intoxication with depression of vital signs. Particular care should be exercised in the use of intravenous midazolam in adult or pediatric patients with uncompensated acute illnesses, such as severe fluid or electrolyte disturbances.

There have been limited reports of intra-arterial injection of midazolam. Adverse events have included local reactions, as well as isolated reports of seizure activity in which no clear causal relationship was established. Precautions against unintended intra-arterial injection should be taken. Extravasation should also be avoided.

The safety and efficacy of midazolam following nonintravenous and nonintramuscular routes of administration have not been established. Midazolam should only be administered intramuscularly or intravenously.

The decision as to when patients who have received injectable midazolam, particularly on an outpatient basis, may again engage in activities requiring complete mental alertness, operate hazardous machinery or drive a motor vehicle must be individualized. Gross tests of recovery from the effects of midazolam (see CLINICAL PHARMACOLOGY) cannot be relied upon to predict reaction time under stress. It is recommended that no patient operate hazardous machinery or a motor vehicle until the effects of the drug, such as drowsiness, have subsided or until one full day after anesthesia and surgery, whichever is longer. For pediatric patients, particular care should be taken to assure safe ambulation.

Usage in Pregnancy: An increased risk of congenital malformations associated with the use of benzodiazepine drugs (diazepam and chlordiazepoxide) has been suggested in several studies. If this drug is used during pregnancy, the patient should be apprised of the potential hazard to the fetus.

Withdrawal symptoms of the barbiturate type have occurred after the discontinuation of benzodiazepines (see DRUG ABUSE AND DEPENDENCE).

Usage in Preterm Infants and Neonates: Rapid injection should be avoided in the neonatal population. Midazolam administered rapidly as an intravenous injection (less than 2 minutes) has been associated with severe hypotension in neonates, particularly when the

patient has also received fentanyl. Likewise, severe hypotension has been observed in neonates receiving a continuous infusion of midazolam who then receive a rapid intravenous injection of fentanyl. Seizures have been reported in several neonates following rapid intravenous administration.

The neonate also has reduced and/or immature organ function and is also vulnerable to profound and/or prolonged respiratory effects of midazolam.

PRECAUTIONS

General: Intravenous doses of midazolam should be decreased for elderly and for debilitated patients (see WARNINGS and DOSAGE AND ADMINISTRATION). These patients will also probably take longer to recover completely after midazolam administration for the induction of anesthesia.

Midazolam does not protect against the increase in intracranial pressure or against the heart rate rise and/or blood pressure rise associated with endotracheal intubation under light general anesthesia.

Use with Other CNS Depressants: The efficacy and safety of midazolam in clinical use are functions of the dose administered, the clinical status of the individual patient, and the use of concomitant medications capable of depressing the CNS. Anticipated effects range from mild sedation to deep levels of sedation virtually equivalent to a state of general anesthesia where the patient may require external support of vital functions. Care must be taken to individualize and carefully titrate the dose of midazolam to the patient's underlying medical/ surgical conditions, administer to the desired effect being certain to wait an adequate time for peak CNS effects of both midazolam and concomitant medications, and have the personnel and size-appropriate equipment and facilities available for monitoring and intervention (see Boxed WARNING, WARNINGS and DOSAGE AND ADMINISTRATION). Practitioners administering midazolam must have the skills necessary to manage reasonably foreseeable adverse effects, particularly skills in airway management. For information regarding withdrawal see DRUG ABUSE AND DEPENDENCE.

Information for Patients: To assure safe and effective use of benzodiazepines, the following information and instructions should be communicated to the patients when appropriate:

  1. Inform your physician about any alcohol consumption and medicine you are now taking, especially blood pressure medication and antibiotics, including drugs you buy without a prescription. Alcohol has an increased effect when consumed with benzodiazepines, therefore, caution should be exercised regarding simultaneous ingestion of alcohol during benzodiazepine treatment.
  2. Inform your physician if you are pregnant or are planning to become pregnant.
  3. Inform your physician if you are nursing.
  4. Patients should be informed of the pharmacological effects of midazolam, such as sedation and amnesia, which in some patients may be profound. The decision as to when patients who have received injectable midazolam, particularly on an outpatient basis, may again engage in activities requiring complete mental alertness, operate hazardous machinery or drive a motor vehicle must be individualized.
  5. Patients receiving continuous infusion of midazolam in critical care settings over an extended period of time may experience symptoms of withdrawal following abrupt discontinuation.

Drug Interactions: The sedative effect of intravenous midazolam is accentuated by any concomitantly administered medication, which depresses the central nervous system, particularly narcotics (e.g., morphine, meperidine and fentanyl) and also secobarbital and droperidol. Consequently, the dosage of midazolam should be adjusted according to the type and amount of concomitant medications administered and the desired clinical response (see DOSAGE AND ADMINISTRATION).

Caution is advised when midazolam is administered concomitantly with drugs that are known to inhibit the P450-3A4 enzyme system such as cimetidine (not ranitidine), erythromycin, diltiazem, verapamil, ketoconazole and itraconazole. These drug interactions may result in prolonged sedation due to a decrease in plasma clearance of midazolam.

The effect of single oral doses of 800 mg cimetidine and 300 mg ranitidine on steady-state concentrations of midazolam was examined in a randomized crossover study (n=8). Cimetidine increased the mean midazolam steady-state concentration from 57 to 71 ng/mL. Ranitidine increased the mean steady-state concentration to 62 ng/mL. No change in choice reaction time or sedation index was detected after dosing with the H2 receptor antagonists.

In a placebo-controlled study, erythromycin administered as a 500 mg dose, tid, for 1 week (n=6), reduced the clearance of midazolam following a single 0.5 mg/kg IV dose. The halflife was approximately doubled.

Caution is advised when midazolam is administered to patients receiving erythromycin since this may result in a decrease in the plasma clearance of midazolam.

The effects of diltiazem (60 mg tid) and verapamil (80 mg tid) on the pharmacokinetics and pharmacodynamics of midazolam were investigated in a three-way crossover study (n=9). The half-life of midazolam increased from 5 to 7 hours when midazolam was taken in conjunction with verapamil or diltiazem. No interaction was observed in healthy subjects between midazolam and nifedipine.

In a placebo-controlled study, saquinavir administered as a 1200 mg dose, tid, for 5 days (n=12), a 56% reduction in the clearance of midazolam following a single 0.05 mg/kg IV dose was observed. The half-life was approximately doubled.

A moderate reduction in induction dosage requirements of thiopental (about 15%) has been noted following use of intramuscular midazolam for premedication in adults.

The intravenous administration of midazolam decreases the minimum alveolar concentration (MAC) of halothane required for general anesthesia. This decrease correlates with the dose of midazolam administered; no similar studies have been carried out in pediatric patients but there is no scientific reason to expect that pediatric patients would respond differently than adults.

Although the possibility of minor interactive effects has not been fully studied, midazolam and pancuronium have been used together in patients without noting clinically significant changes in dosage, onset or duration in adults. Midazolam does not protect against the characteristic circulatory changes noted after administration of succinylcholine or pancuronium and does not protect against the increased intracranial pressure noted following administration of succinylcholine. Midazolam does not cause a clinically significant change in dosage, onset or duration of a single intubating dose of succinylcholine; no similar studies have been carried out in pediatric patients but there is not scientific reason to expect that pediatric patients would respond differently than adults.

No significant adverse interactions with commonly used premedications or drugs used during anesthesia and surgery (including atropine, scopolamine, glycopyrrolate, diazepam, hydroxyzine, d-tubocurarine, succinylcholine and other nondepolarizing muscle relaxants) or topical local anesthetics (including lidocaine, dyclonine HCl and Cetacaine) have been observed in adults or pediatric patients. In neonates, however, severe hypotension has been reported with concomitant administration of fentanyl. This effect has been observed in neonates on an infusion of midazolam who received a rapid injection of fentanyl and in patients on an infusion of fentanyl who have received a rapid injection of midazolam.

Drug/Laboratory Test Interactions: Midazolam has not been shown to interfere with results obtained in clinical laboratory tests.

Carcinogenesis, Mutagenesis, Impairment of Fertility: Carcinogenesis: Midazolam maleate was administered with diet in mice and rats for 2 years at dosages of 1, 9 and 80 mg/kg/day. In female mice in the highest dose group there was a marked increase in the incidence of hepatic tumors. In high-dose male rats there was a small but statistically significant increase in benign thyroid follicular cell tumors. Dosages of 9 mg/kg/day of midazolam maleate (25 times a human dose of 0.35 mg/kg) do not increase the incidence of tumors. The pathogenesis of induction of these tumors is not known. These tumors were found after chronic administration, whereas human use will ordinarily be of single or several doses.

Mutagenesis: Midazolam did not have mutagenic activity in Salmonella typhimurium (5 bacterial strains), Chinese hamster lung cells (V79), human lymphocytes or in the micronucleus test in mice.

Impairment of Fertility: A reproduction study in male and female rats did not show any impairment of fertility at dosages up to 10 times the human IV dose of 0.35 mg/kg.

Pregnancy: Teratogenic Effects: Pregnancy Category D (see WARNINGS).

Segment II teratology studies, performed with midazolam maleate injectable in rabbits and rats at 5 and 10 times the human dose of 0.35 mg/kg, did not show evidence of teratogenicity.

Nonteratogenic Effects: Studies in rats showed no adverse effects on reproductive parameters during gestation and lactation. Dosages tested were approximately 10 times the human dose of 0.35 mg/kg.

Labor and Delivery: In humans, measurable levels of midazolam were found in maternal venous serum, umbilical venous and arterial serum and amniotic fluid, indicating placental transfer of the drug. Following intramuscular administration of 0.05 mg/kg of midazolam, both the venous and the umbilical arterial serum concentrations were lower than maternal concentrations.

The use of injectable midazolam in obstetrics has not been evaluated in clinical studies. Because midazolam is transferred transplacentally and because other benzodiazepines given in the last weeks of pregnancy have resulted in neonatal CNS depression, midazolam is not recommended for obstetrical use.

Nursing Mothers: Midazolam is excreted in human milk. Caution should be exercised when midazolam is administered to a nursing woman.

Pediatric Use: The safety and efficacy of midazolam for sedation/anxiolysis/amnesia following single dose intramuscular administration, intravenously by intermittent injections and continuous infusion have been established in pediatric and neonatal patients. For specific safety monitoring and dosage guidelines (see Boxed WARNING, CLINICAL PHARMACOLOGY, INDICATIONS AND USAGE, WARNINGS, PRECAUTIONS, ADVERSE REACTIONS, OVERDOSAGE and DOSAGE AND ADMINISTRATION). UNLIKE ADULT PATIENTS, PEDIATRIC PATIENTS GENERALLY RECEIVE INCREMENTS OF MIDAZOLAM ON A MG/KG BASIS. As a group, pediatric patients generally require higher dosages of midazolam (mg/kg) than do adults. Younger (less than six years) pediatric patients may require higher dosages (mg/kg) than older pediatric patients, and may require closer monitoring. In obese PEDIATRIC PATIENTS, the dose should be calculated based on ideal body weight. When midazolam is given in conjunction with opioids or other sedatives, the potential for respiratory depression, airway obstruction, or hypoventilation is increased. The health care practitioner who uses this medication in pediatric patients should be aware of and follow accepted professional guidelines for pediatric sedation appropriate to their situation.

Midazolam should not be administered by rapid injection in the neonatal population. Severe hypotension and seizures have been reported following rapid IV administration, particularly, with concomitant use of fentanyl.

Geriatric Use: Because geriatric patients may have altered drug distribution and diminished hepatic and/or renal function, reduced doses of midazolam are recommended. Intravenous and intramuscular doses of midazolam should be decreased for elderly and for debilitated patients (see WARNINGS and DOSAGE AND ADMINISTRATION) and subjects over 70 years of age may be particularly sensitive. These patients will also probably take longer to recover completely after midazolam administration for the induction of anesthesia. Administration of IM and IV midazolam to elderly and/or high risk surgical patients has been associated with rare reports of death under circumstances compatible with cardiorespiratory depression. In most cases, the patients also received other central nervous system depressants capable of depressing respiration, especially narcotics (see DOSAGE AND ADMINISTRATION).

Specific dosing and monitoring guidelines for geriatric patients are provided in the DOSAGE AND ADMINISTRATION section for premedicated patients for sedation/anxiolysis/amnesia following IV and IM administration, for induction of anesthesia following IV administration and for continuous infusion.

Adverse Reactions

See WARNINGS concerning serious cardiorespiratory events and possible paradoxical reactions. Fluctuations in vital signs were the most frequently seen findings following parenteral administration of midazolam in adults and included decreased tidal volume and/ or respiratory rate decrease (23.3% of patients following IV and 10.8% of patients following IM administration) and apnea (15.4% of patients following IV administration), as well as variations in blood pressure and pulse rate. The majority of serious adverse effects, particularly those associated with oxygenation and ventilation, have been reported when midazolam is administered with other medications capable of depressing the central nervous system. The incidence of such events is higher in patients undergoing procedures involving the airway without the protective effect of an endotracheal tube (e.g., upper endoscopy and dental procedures).

Adults: The following additional adverse reactions were reported after intramuscular administration:

headache (1.3%) Local effects at IM injection site
pain (3.7%)
induration (0.5%)
redness (0.5%)
muscle stiffness (0.3%)

Administration of IM midazolam to elderly and/or higher risk surgical patients has been associated with rare reports of death under circumstances compatible with cardiorespiratory depression. In most of these cases, the patients also received other central nervous system depressants capable of depressing respiration, especially narcotics (see DOSAGE AND ADMINISTRATION).

The following additional adverse reactions were reported subsequent to intravenous administration as a single sedative/anxiolytic/amnestic agent in adult patients:

hiccoughs (3.9%) Local effects at the IV site
nausea (2.8%) tenderness (5.6%)
vomiting (2.6%) pain during injection (5.0%)
coughing (1.3%) redness (2.6%)
“oversedation” (1.6%) induration (1.7%)
headache (1.5%) phlebitis (0.4%)
drowsiness (1.2%)

Pediatric Patients: The following adverse events related to the use of IV midazolam in pediatric patients were reported in the medical literature: desaturation 4.6%, apnea 2.8%, hypotension 2.7%, paradoxical reactions 2.0%, hiccough 1.2%, seizure-like activity 1.1% and nystagmus 1.1%. The majority of airway-related events occurred in patients receiving other CNS depressing medications and in patients where midazolam was not used as a single sedating agent.

Neonates: For information concerning hypotensive episodes and seizures following the administration of midazolam to neonates, (see Boxed WARNING, CONTRAINDICATIONS, WARNINGS and PRECAUTIONS).

Other adverse experiences, observed mainly following IV injection as a single sedative/ anxiolytic/amnesia agent and occurring at an incidence of < 1.0% in adult and pediatric patients, are as follows:

Respiratory: Laryngospasm, bronchospasm, dyspnea, hyperventilation, wheezing, shallow respirations, airway obstruction, tachypnea

Cardiovascular: Bigeminy, premature ventricular contractions, vasovagal episode, bradycardia, tachycardia, nodal rhythm

Gastrointestinal: Acid taste, excessive salivation, retching

CNS/Neuromuscular: Retrograde amnesia, euphoria, hallucination, confusion, argumentativeness, nervousness, anxiety, grogginess, restlessness, emergence delirium or agitation, prolonged emergence from anesthesia, dreaming during emergence, sleep disturbance, insomnia, nightmares, athetoid movements, seizure-like activity, ataxia, dizziness, dysphoria, slurred speech, dysphonia, paresthesia

Special Senses: Blurred vision, diplopia, nystagmus, pinpoint pupils, cyclic movements of eyelids, visual disturbance, difficulty focusing eyes, ears blocked, loss of balance, lightheadedness

Integumentary: Hive-like elevation at injection site, swelling or feeling of burning, warmth or coldness at injection site

Hypersensitivity: Allergic reactions including anaphylactoid reactions, hives, rash, pruritus

Miscellaneous: Yawning, lethargy, chills, weakness, toothache, faint feeling, hematoma

DRUG ABUSE AND DEPENDENCE

Midazolam is subject to Schedule IV control under the Controlled Substances Act of 1970.

Midazolam was actively self-administered in primate models used to assess the positive reinforcing effects of psychoactive drugs.

Midazolam produced physical dependence of a mild to moderate intensity in cynomolgus monkeys after 5 to 10 weeks of administration. Available data concerning the drug abuse and dependence potential of midazolam suggest that its abuse potential is at least equivalent to that of diazepam.

Withdrawal symptoms, similar in character to those noted with barbiturates and alcohol (convulsions, hallucinations, tremor, abdominal and muscle cramps, vomiting and sweating), have occurred following abrupt discontinuation of benzodiazepines, including midazolam. Abdominal distention, nausea, vomiting, and tachycardia are prominent symptoms of withdrawal in infants. The more severe withdrawal symptoms have usually been limited to those patients who had received excessive doses over an extended period of time. Generally milder withdrawal symptoms (e.g., dysphoria and insomnia) have been reported following abrupt discontinuance of benzodiazepines taken continuously at the therapeutic levels for several months. Consequently, after extended therapy, abrupt discontinuation should generally be avoided and a gradual dosage tapering schedule followed. There is no consensus in the medical literature regarding tapering schedules; therefore, practitioners are advised to individualize therapy to meet patient's needs. In some case reports, patients who have had severe withdrawal reactions due to abrupt discontinuation of high-dose long-term midazolam have been successfully weaned off of midazolam over a period of several days.

OVERDOSAGE

The manifestations of midazolam overdosage reported are similar to those observed with other benzodiazepines, including sedation, somnolence, confusion, impaired coordination, diminished reflexes, coma and untoward effects on vital signs. No evidence of specific organ toxicity from midazolam overdosage has been reported.

Treatment of Overdosage: Treatment of injectable midazolam overdosage is the same as that followed for overdosage with other benzodiazepines. Respiration, pulse rate and blood pressure should be monitored and general supportive measures should be employed. Attention should be given to the maintenance of a patent airway and support of ventilation, including administration of oxygen. An intravenous infusion should be started. Should hypotension develop, treatment may include intravenous fluid therapy, repositioning, judicious use of vasopressors appropriate to the clinical situation, if indicated, and other appropriate countermeasures. There is no information as to whether peritoneal dialysis, forced diuresis or hemodialysis are of any value in the treatment of midazolam overdosage.

Flumazenil, a specific benzodiazepine-receptor antagonist, is indicated for the complete or partial reversal of the sedative effects of benzodiazepines and may be used in situations when an overdose with a benzodiazepine is known or suspected. There are anecdotal reports of reversal of adverse hemodynamic responses associated with midazolam following administration of flumazenil to pediatric patients. Prior to the administration of flumazenil, necessary measures should be instituted to secure the airway, assure adequate ventilation, and establish adequate intravenous access. Flumazenil is intended as an adjunct to, not as a substitute for, proper management of benzodiazepine overdose. Patients treated with flumazenil should be monitored for resedation, respiratory depression and other residual benzodiazepine effects for an appropriate period after treatment. Flumazenil will only reverse benzodiazepine-induced effects but will not reverse the effects of other concomitant medications.

The reversal of benzodiazepine effects may be associated with the onset of seizures in certain high-risk patients. The prescriber should be aware of a risk of seizure in association with flumazenil treatment, particularly in long-term benzodiazepine users and in cyclic antidepressant overdose. The complete flumazenil package insert, including CONTRAINDICATIONS, WARNINGS and PRECAUTIONS, should be consulted prior to use.

DOSAGE AND ADMINISTRATION

Midazolam Injection is a potent sedative agent that requires slow administration and individualization of dosage. Clinical experience has shown midazolam to be 3 to 4 times as potent per mg as diazepam. BECAUSE SERIOUS AND LIFETHREATENING CARDIORESPIRATORY ADVERSE EVENTS HAVE BEEN REPORTED, PROVISION FOR MONITORING, DETECTION AND CORRECTION OF THESE REACTIONS MUST BE MADE FOR EVERY PATIENT TO WHOM Midazolam Injection IS ADMINISTERED, REGARDLESS OF AGE OR HEALTH STATUS. Excessive single doses or rapid intravenous administration may result in respiratory depression, airway obstruction and/or arrest. The potential for these latter effects is increased in debilitated patients, those receiving concomitant medications capable of depressing the CNS, and patients without an endotracheal tube but undergoing a procedure involving the upper airway such as endoscopy or dental (see Boxed WARNING and WARNINGS).

Reactions such as agitation, involuntary movements, hyperactivity and combativeness have been reported in adult and pediatric patients. Should such reactions occur, caution should be exercised before continuing administration of midazolam (see WARNINGS).

Midazolam Injection should only be administered IM or IV (see WARNINGS).

Care should be taken to avoid intra-arterial injection or extravasation (see WARNINGS).

Midazolam Injection may be mixed in the same syringe with the following frequently used premedications: morphine sulfate, meperidine, atropine sulfate or scopolamine. Midazolam, at a concentration of 0.5 mg/mL, is compatible with 5% dextrose in water and 0.9% sodium chloride for up to 24 hours and with Lactated Ringer's solution for up to 4 hours. Both the 1 mg/mL and 5 mg/mL formulations of midazolam may be diluted with 0.9% sodium chloride or 5% dextrose in water.

Monitoring: Patient response to sedative agents, and resultant respiratory status, is variable. Regardless of the intended level of sedation or route of administration, sedation is a continuum; a patient may move easily from light to deep sedation, with potential loss of protective reflexes. This is especially true in pediatric patients. Sedative doses should be individually titrated, taking into account patient age, clinical status and concomitant use of other CNS depressants. Continuous monitoring of respiratory and cardiac function is required (i.e., pulse oximetry).

Adults and Pediatrics: Sedation guidelines recommend a careful presedation history to determine how a patient's underlying medical conditions or concomitant medications might affect their response to sedation/analgesia as well as a physical examination including a focused examination of the airway for abnormalities. Further recommendations include appropriate presedation fasting.

Titration to effect with multiple small doses is essential for safe administration. It should be noted that adequate time to achieve peak central nervous system effect (3 to 5 minutes) for midazolam should be allowed between doses to minimize the potential for oversedation. Sufficient time must elapse between doses of concomitant sedative medications to allow the effect of each dose to be assessed before subsequent drug administration. This is an important consideration for all patients who receive intravenous midazolam.

Immediate availability of resuscitative drugs and age- and size-appropriate equipment and personnel trained in their use and skilled in airway management should be assured (see WARNINGS).

Pediatrics: For deeply sedated pediatric patients a dedicated individual, other than the practitioner performing the procedure, should monitor the patient throughout the procedure.

Intravenous access is not thought to be necessary for all pediatric patients sedated for a diagnostic or therapeutic procedure because in some cases the difficulty of gaining IV access would defeat the purpose of sedating the child; rather, emphasis should be placed upon having the intravenous equipment available and a practitioner skilled in establishing vascular access in pediatric patients immediately available.

USUAL ADULT DOSAGE
INTRAMUSCULARLY
For preoperative sedation/
anxiolysis/amnesia
(induction of sleepiness
or drowsiness and relief
of apprehension and to
impair memory of
perioperative events).
For intramuscular use,
midazolam should be
injected deep in a large
muscle mass.
The recommended premedication dose of midazolam for
good risk (ASA Physical Status I & II) adult patients below
the age of 60 years is 0.07 to 0.08 mg/kg IM (approximately
5 mg IM) administered up to 1 hour before surgery.
The dose must be individualized and reduced when
IM midazolam is administered to patients with chronic
obstructive pulmonary disease, other higher risk surgical
patients, patients 60 or more years of age, and patients who
have received concomitant narcotics or other CNS
depressants (see ADVERSE REACTIONS). In a study of
patients 60 years or older, who did not receive concomitant
administration of narcotics, 2 to 3 mg (0.02 to 0.05 mg/kg)
of midazolam produced adequate dosing during the preoperative
period. The dose of 1 mg IM midazolam may
suffice for some older patients if the anticipated intensity
and duration of sedation is less critical. As with any potential
respiratory depressant, these patients require observation for
signs of cardiorespiratory depression after receiving IM
midazolam.
Onset is within 15 minutes, peaking at 30 to 60 minutes. It
can be administered concomitantly with atropine sulfate or
scopolamine hydrochloride and reduced doses of narcotics.
INTRAVENOUSLY
Sedation/anxiolysis/
amnesia for procedures
(see INDICATIONS):
Narcotic premedication
results in less variability
in patient response and
a reduction in dosage of
midazolam.
For peroral procedures,
the use of an appropriate
topical anesthetic is
recommended. For
bronchoscopic procedures,
the use of narcotic premedications
is
recommended.
When used for sedation/anxiolysis/amnesia for a procedure,
dosage must be individualized and titrated. Midazolam
should always be titrated slowly; administer over at least
2 minutes and allow an additional 2 or more minutes to fully
evaluate the sedative effect. Individual response will vary
with age, physical status and concomitant medications, but
may also vary independent of these factors. (see WARNINGS
concerning cardiac/respiratory arrest/airway obstruction/
hypoventilation).
Midazolam 1 mg/mL
formulation is
recommended for
sedation/anxiolysis/
amnesia for procedures to
facilitate slower injection.
Both the 1 mg/mL and
the 5 mg/mL formulations
may be diluted with 0.9%
sodium chloride or 5%
dextrose in water.
  1. Healthy Adults Below the Age of 60: Titrate slowly to
    the desired effect (e.g., the initiation of slurred speech).
    Some patients may respond to as little as 1 mg. No more
    than 2.5 mg should be given over a period of at least
    2 minutes. Wait an additional 2 or more minutes to
    fully evaluate the sedative effect. If further titration is
    necessary, continue to titrate, using small increments, to
    the appropriate level of sedation. Wait an additional 2 or
    more minutes after each increment to fully evaluate the
    sedative effect. A total dose greater than 5 mg is not
    usually necessary to reach the desired endpoint.
    If narcotic premedication or other CNS depressants are
    used, patients will require approximately 30% less
    midazolam than unpremedicated patients.
  2. Patients Age 60 or Older, and Debilitated or Chronically Ill
    Patients:
    Because the danger of hypoventilation, airway
    obstruction, or apnea is greater in elderly patients and
    those with chronic disease states or decreased pulmonary
    reserve, and because the peak effect may take longer in
    these patients increments should be smaller and the rate
    of injection slower. Titrate slowly to the desired effect
    (e.g., the initiation of slurred speech). Some patients may
    respond to as little as 1 mg. No more than 1.5 mg should
    be given over a period of no less than 2 minutes. Wait an
    additional 2 or more minutes to fully evaluate the sedative
    effect. If additional titration is necessary, it should be given
    at a rate of no more than 1 mg over a period of 2 minutes,
    waiting an additional 2 or more minutes each time to
    fully evaluate the sedative effect. Total doses greater than
    3.5 mg are not usually necessary.
    If concomitant CNS depressant premedications are used
    in these patients, they will require at least 50% less
    midazolam than healthy young unpremedicated patients.
  3. Maintenance Dose: Additional doses to maintain the
    desired level of sedation may be given in increments of
    25% of the dose used to first reach the sedative endpoint,
    but again only by slow titration, especially in the elderly
    and chronically ill or debilitated patient. These additional
    doses should be given only after a thorough clinical
    evaluation clearly indicates the need for additional
    sedation.
Induction of Anesthesia:
For induction of general
anesthesia, before
administration of other
anesthetic agents.
Individual response to the drug is variable, particularly when
a narcotic premedication is not used. The dosage should be
titrated to the desired effect according to the patient's age
and clinical status.
When midazolam is used before other intravenous agents for
induction of anesthesia, the initial dose of each agent may be
significantly reduced, at times to as low as 25% of the usual
initial dose of the individual agents.
Unpremedicated Patients: In the absence of premedication,
an average adult under the age of 55 years will usually
require an initial dose of 0.3 to 0.35 mg/kg for induction,
administered over 20 to 30 seconds and allowing 2 minutes
for effect. If needed to complete induction, increments of
approximately 25% of the patient's initial dose may be used;
induction may instead be completed with inhalational
anesthetics. In resistant cases, up to 0.6 mg/kg total dose
may be used for induction, but such larger doses may
prolong recovery.
Unpremedicated patients over the age of 55 years usually
require less midazolam for induction; an initial dose of
0.3 mg/kg is recommended. Unpremedicated patients with
severe systemic disease or other debilitation usually require
less midazolam for induction. An initial dose of 0.2 to
0.25 mg/kg will usually suffice; in some cases, as little as
0.15 mg/kg may suffice.
Premedicated Patients: When the patient has received
sedative or narcotic premedication, particularly narcotic
premedication, the range of recommended doses is 0.15 to
0.35 mg/kg. In average adults below the age of 55 years,
a dose of 0.25 mg/kg, administered over 20 to 30 seconds
and allowing 2 minutes for effect, will usually suffice.
The initial dose of 0.2 mg/kg is recommended for good risk
(ASA I & II) surgical patients over the age of 55 years.
In some patients with severe systemic disease or debilitation,
as little as 0.15 mg/kg may suffice.
Narcotic premedication frequently used during clinical trials
included fentanyl (1.5 to 2 mcg/kg IV, administered 5 minutes
before induction), morphine (dosage individualized, up to
0.15 mg/kg IM), and meperidine (dosage individualized, up
to 1 mg/kg IM). Sedative premedications were hydroxyzine
pamoate (100 mg orally) and sodium secobarbital (200 mg
orally). Except for intravenous fentanyl, administered
5 minutes before induction, all other premedications should
be administered approximately 1 hour prior to the time
anticipated for midazolam induction.
Injectable midazolam
can also be used during
maintenance of anesthesia,
for surgical procedures, as
a component of balanced
anesthesia. Effective
narcotic premedication is
especially recommended
in such cases.
Incremental injections of approximately 25% of the induction
dose should be given in response to signs of lightening of
anesthesia and repeated as necessary.
CONTINUOUS INFUSION
For continuous infusion,
midazolam 5 mg/mL
formulation is
recommended diluted to
a concentration of
0.5 mg/mL with 0.9%
sodium chloride or 5%
dextrose in water.
Usual Adult Dose: If a loading dose is necessary to rapidly
initiate sedation, 0.01 to 0.05 mg/kg (approximately 0.5 to
4 mg for a typical adult) may be given slowly or infused
over several minutes. This dose may be repeated at 10 to
15 minute intervals until adequate sedation is achieved.
For maintenance of sedation, the usual initial infusion rate
is 0.02 to 0.10 mg/kg/hr (1 to 7 mg/hr). Higher loading or
maintenance infusion rates may occasionally be required in
some patients. The lowest recommended doses should be
used in patients with residual effects from anesthetic drugs,
or in those concurrently receiving other sedatives and
opioids.
Individual response to midazolam is variable. The infusion
rate should be titrated to the desired level of sedation, taking
into account the patient's age, clinical status and current
medications. In general, midazolam should be infused at
the lowest rate that produces the desired level of sedation.
Assessment of sedation should be performed at regular
intervals and the midazolam infusion rate adjusted up or
down by 25% to 50% of the initial infusion rate so as to
assure adequate titration of sedation level. Larger
adjustments or even a small incremental dose may be
necessary if rapid changes in the level of sedation are
indicated. In addition, the infusion rate should be decreased
by 10% to 25% every few hours to find the minimum
effective infusion rate. Finding the minimum effective
infusion rate decreases the potential accumulation of
midazolam and provides for the most rapid recovery once
the infusion is terminated. Patients who exhibit agitation,
hypertension, or tachycardia in response to noxious
stimulation, but who are otherwise adequately sedated,
may benefit from concurrent administration of an opioid
analgesic. Addition of an opioid will generally reduce the
minimum effective midazolam infusion rate.
PEDIATRIC PATIENTS
UNLIKE ADULT PATIENTS, PEDIATRIC PATIENTS
GENERALLY RECEIVE INCREMENTS OF MIDAZOLAM ON
A MG/KG BASIS.

As a group, pediatric patients generally require higher
dosages of midazolam (mg/kg) than do adults. Younger (less
than six years) pediatric patients may require higher dosages
(mg/kg) than older pediatric patients, and may require close
monitoring (see tables below). In obese PEDIATRIC PATIENTS,
the dose should be calculated based on ideal body weight.
When midazolam is given in conjunction with opioids or
other sedatives, the potential for respiratory depression,
airway obstruction, or hypoventilation is increased. For
appropriate patient monitoring, see Boxed WARNING,
WARNINGS and DOSAGE AND ADMINISTRATION, Monitoring

. The health care practitioner who uses this
medication in pediatric patients should be aware of and
follow accepted professional guidelines for pediatric sedation
appropriate to their situation.
OBSERVER'S ASSESSMENT OF ALERTNESS/SEDATION (OAA/S)
Assessment Categories
Responsiveness Speech Facial Expression Eyes Composite Score
Responds readily to name spoken in normal tone normal normal clear,
no ptosis
5 (alert)
Lethargic response to name spoken in normal tone mild slowing or thickening mild relaxation glazed or
mild ptosis
(less than half the eye)
4
Responds only after name is called loudly and/or repeatedly slurring or prominent
slowing
marked
relaxation (slack jaw)
glazed and
marked ptosis
(half the eye or more)
3
Responds only after mild prodding or shaking few
recognizable words
2
Does not respond to mild prodding or shaking 1 (deep sleep)
FREQUENCY OF OBSERVER'S ASSESSMENT OF ALERTNESS/SEDATION
COMPOSITE SCORES IN ONE STUDY OF PEDIATRIC PATIENTS
UNDERGOING PROCEDURES WITH INTRAVENOUS MIDAZOLAM FOR SEDATION
Age Range (years) n OAA/S Score
1-2 16 1 (deep sleep) 2 3 4 5
(alert)
6 (38%) 4 (25%) 3 (19%) 3 (19%) 0    
> 2-5 22 9 (41%) 5 (23%) 8 (36%) 0 0
> 5-12 34 1 (3%) 6 (18%) 22 (65%) 5 (15%) 0
> 12-17 18 0 4 (22%) 14 (78%) 0 0
Total (1 – 17) 90 16 (18%) 19 (21%) 47 (52%) 8 (9%) 0
INTRAMUSCULARLY USUAL PEDIATRIC DOSE (NONNEONATAL)
For sedation/anxiolysis/amnesia
prior to anesthesia or for
procedures, intramuscular
midazolam can be used to
sedate pediatric patients to
facilitate less traumatic
insertion of an intravenous
catheter for titration of
additional medication.
Sedation after intramuscular midazolam is age and dose
dependent: higher doses may result in deeper and more
prolonged sedation. Doses of 0.1 to 0.15 mg/kg are
usually effective and do not prolong emergence from
general anesthesia. For more anxious patients, doses
up to 0.5 mg/kg have been used. Although not
systematically studied, the total dose usually does not
exceed 10 mg. If midazolam is given with an opioid, the
initial dose of each must be reduced.
INTRAVENOUSLY BY
INTERMITTENT INJECTION
USUAL PEDIATRIC DOSE (NONNEONATAL)
For sedation/anxiolysis/
amnesia prior to and during
procedures or prior to
anesthesia.
It should be recognized that the depth of sedation/
anxiolysis needed for pediatric patients depends on the
type of procedure to be performed. For example, simple
light sedation/anxiolysis in the preoperative period is
quite different from the deep sedation and analgesia
required for an endoscopic procedure in a child. For this
reason, there is a broad range of dosage. For all pediatric
patients, regardless of the indications for sedation/
anxiolysis, it is vital to titrate midazolam and other
concomitant medications slowly to the desired clinical
effect. The initial dose of midazolam should be
administered over 2 to 3 minutes. Since midazolam is
water soluble, it takes approximately three times longer
than diazepam to achieve peak EEG effects, therefore
one must wait an additional 2 to 3 minutes to fully
evaluate the sedative effect before initiating a procedure
or repeating a dose. If further sedation is necessary,
continue to titrate with small increments until the
appropriate level of sedation is achieved. If other
medications capable of depressing the CNS are
coadministered, the peak effect of those concomitant
medications must be considered and the dose of
midazolam adjusted. The importance of drug titration
to effect is vital to the safe sedation/anxiolysis of the
pediatric patient. The total dose of midazolam will
depend on patient response, the type and duration of the
procedure, as well as the type and dose of concomitant
medications.
  1. Pediatric patients less than 6 months of age: limited
    information is available in nonintubated
    pediatric
    patients less than 6 months of age. It is uncertain
    when the patient transfers from neonatal physiology
    to pediatric physiology, therefore the dosing
    recommendations are unclear. Pediatric patients less
    than 6 months of age are particularly vulnerable to
    airway obstruction and hypoventilation, therefore
    titration with small increments to clinical effect and
    careful monitoring are essential.
  2. Pediatric patients 6 months to 5 years of age: initial
    dose 0.05 to 0.1 mg/kg. A total dose up to 0.6 mg/kg
    may be necessary to reach the desired endpoint but
    usually does not exceed 6 mg. Prolonged sedation and
    risk of hypoventilation may be associated with the
    higher doses.
  3. Pediatric patients 6 to 12 years of age: Initial dose
    0.025 to 0.05 mg/kg; total dose up to 0.4 mg/kg may
    be needed to reach the desired endpoint but usually
    does not exceed 10 mg. Prolonged sedation and risk
    of hypoventilation may be associated with the
    higher doses.
  4. Pediatric patients 12 to 16 years of age: should be
    dosed as adults. Prolonged sedation may be
    associated with higher doses; some patients in this
    age range will require higher than recommended
    adult doses but the total dose usually does not
    exceed 10 mg.
    The dose of midazolam must be reduced in patients
    premedicated with opioid or other sedative agents
    including midazolam. Higher risk or debilitated patients
    may require lower dosages whether or not concomitant
    sedating medications have been administered
    (see WARNINGS).
CONTINUOUS INTRAVENOUS
INFUSION
USUAL PEDIATRIC DOSE (NONNEONATAL)
For sedation/anxiolysis/amnesia
in critical care settings.
To initiate sedation, an intravenous loading dose of
0.05 to 0.2 mg/kg administered over at least 2 to
3 minutes can be used to establish the desired clinical
effect IN PATIENTS WHOSE TRACHEA IS INTUBATED.
(Midazolam should not be administered as a rapid
intravenous dose.) This loading dose may be followed
by a continuous intravenous infusion to maintain the
effect. An infusion of midazolam has been used in
patients whose trachea was intubated but who were
allowed to breathe spontaneously. Assisted ventilation
is recommended for pediatric patients who are receiving
other central nervous system depressant medications
such as opioids. Based on pharmacokinetic parameters
and reported clinical experience, continuous intravenous
infusions of midazolam should be initiated at a rate of
0.06 to 0.12 mg/kg/hr (1 to 2 mcg/kg/min). The rate of
infusion can be increased or decreased (generally by 25%
of the initial or subsequent infusion rate) as required, or
supplemental intravenous doses of midazolam can be
administered to increase or maintain the desired effect.
Frequent assessment at regular intervals using standard
pain/sedation scales is recommended. Drug elimination
may be delayed in patients receiving erythromycin and/or
other P4503A4
enzyme inhibitors (see PRECAUTIONS, Drug Interactions
) and in patients with liver
dysfunction, low cardiac output (especially those
requiring inotropic support), and in neonates.
Hypotension may be observed in patients who are
critically ill, particularly those receiving opioids and/or
when midazolam is rapidly administered.
When initiating an infusion with midazolam in
hemodynamically compromised patients, the usual
loading dose of midazolam should be titrated in small
increments and the patient monitored for hemodynamic
instability, e.g., hypotension. These patients are also
vulnerable to the respiratory depressant effects of
midazolam and require careful monitoring of respiratory
rate and oxygen saturation.
CONTINUOUS INTRAVENOUS
INFUSION
USUAL NEONATAL DOSE
For sedation in critical care
settings.
Based on pharmacokinetic parameters and reported
clinical experience in preterm and term neonates WHOSE
TRACHEA WAS INTUBATED, continuous intravenous
infusions of midazolam should be initiated at a rate of
0.03 mg/kg/hr (0.5 mcg/kg/min) in neonates < 32 weeks
and 0.06 mg/kg/hr (1 mcg/kg/min) in neonates
> 32 weeks. Intravenous loading doses should not be
used in neonates, rather the infusion may be run more
rapidly for the first several hours to establish therapeutic
plasma levels. The rate of infusion should be carefully
and frequently reassessed, particularly after the first
24 hours so as to administer the lowest possible effective
dose and reduce the potential for drug accumulation.
Hypotension may be observed in patients who are
critically ill and in preterm and term infants, particularly
those receiving fentanyl and/or when midazolam is
administered rapidly. Due to an increased risk of apnea,
extreme caution is advised when sedating preterm and
former preterm patients whose trachea is not intubated.

Note: Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.

HOW SUPPLIED

Midazolam Injection (Preservative-Free) is supplied as follows:

2 mg/2 mL (1 mg/mL) in a pre-filled disposable single-use syringe. Available in a carton of twenty-four (24) syringes. NDC 76045-001-20

5 mg/mL in a pre-filled disposable single-use syringe. Available in a carton of twenty-four (24) syringes.

NDC 76045-002-10

10 mg/2 mL (5 mg/mL) in a pre-filled disposable single-use syringe. Available in a carton of twenty-four (24) syringes. NDC 76045-003-20

Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature.] Do not place syringe on a sterile field.

Instructions For Use:

CAUTION: Certain glass syringes may malfunction, break or clog when connected to some Needleless Luer Access Devices (NLADs) and needles. This syringe has a larger internal syringe tip and an external collar (luer collar). The external collar must remain attached to the syringe. Data show that the syringe achieves acceptable connections with the BD Eclipse™ Needle and the Terumo SurGuard2™ Safety Needle and with the following non-center post NLADs: Alaris SMARTSITE™, B-Braun ULTRASITE™, BD-Q SYTE™, Maximum MAX PLUS™, and B-Braun SAFSITE™. The data also show acceptable connections are achieved to the center post ICU Medical CLAVE™. However, spontaneous disconnection of this glass syringe from needles and NLADs with leakage of drug product may occur. Assure that the needle or NLAD is securely attached before beginning the injection. Visually inspect the glass syringe-needle or glass syringe –NLAD connection before and during drug administration. Do not remove the clear plastic wrap around the external collar.

  1. Inspect the outer packaging (blister pack):
    Verify:
    -
    blister integrity
    -
    expiration date
    -
    drug name
    -
    drug strength
    -
    dose volume
    -
    route of administration
    -
    sterile field applicability

    Do not use if package has been damaged.

  2. Peel open the paper (top web) of the outer packaging that displays the product information to access the syringe. Do not pop syringe through.
  3. Bend the plastic part of the outer packaging (thermoform) so as to present the plunger rod for syringe removal.
  4. Perform visual inspection on the syringe Verify:
    -
    absence of external particles
    -
    absence of internal particles
    -
    proper drug color
    -
    expiration date
    -
    drug name
    -
    drug strength
    -
    dose volume
    -
    route of administration
    -
    sterile field applicability
    -
    integrity of the plastic wrap around the external collar
  5. Do not remove plastic wrap around the external collar. Without removing the tip cap, push plunger rod slightly to break the stopper loose.
  6. Do not remove plastic wrap around the external collar. Remove tip cap by twisting it off.
  7. Discard the tip cap.
  8. Expel air bubble.
  9. Adjust dose by expelling extra volume (where applicable) from the syringe into sterile material prior to administration.
  10. Connect the syringe to appropriate injection connection depending on route of administration. Before injection, ensure that the syringe is securely attached to the needle or needleless luer access device.
  11. Depress plunger rod to deliver medication.
  12. Remove syringe from needleless luer access device (if applicable) and discard into appropriate receptacle. If delivering medication via intramuscular route, do not recap needle.

NOTES:

-
All steps must be done sequentially.
-
Do not autoclave syringe.
-
Do not use this product on a sterile field.
-
Do not introduce any other fluid into the syringe at any time.
-
This product is for single dose only.

For more information concerning this drug or to report an adverse event please call BD Rx Inc., at 1-866-943-8534.

BD Simplist™

Rev. 11/13 P0141

BD Rx Inc.
Franklin Lakes, NJ 07417

Principal Display Panel - Carton Label

Rx only NDC 76045-001-20

BD Simplist™

Midazolam CIV
Injection, USP

Preservative Free

2 mg/2 mL
(1mg/mL)

For Intravenous or Intramuscular use only.

Do NOT place syringe on a Sterile Field.

24 x 2mL Prefilled single-use syringes

Discard unused portion.

Principal Display Panel - Blister Pack Label

Rx only NDC 76045-001-20

BD Simplist™

Midazolam CIV
Injection, USP

Preservative Free

2 mg/2 mL
(1mg/mL)

For intravenous or intramuscular use only.

Principal Display Panel - Syringe Label

2mL single use. For IV or IM Use Only. Rx Only

Midazolam
Injection, USP
Preservative Free CIV

2 mg/2 mL
(1mg/mL)

BD Rx Inc.
Franklin Lakes,
NJ 07417

Principal Display Panel - Carton Label

Rx only NDC 76045-002-10

BD Simplist™

Midazolam CIV
Injection, USP

Preservative Free

5 mg/mL

For Intravenous or Intramuscular use only.

Do NOT place syringe on a Sterile Field.

24 x 1mL Prefilled single-use syringes

Discard unused portion.

Principal Display Panel - Blister Pack Label

Rx only NDC 76045-002-10

BD Simplist™

Midazolam CIV
Injection, USP

Preservative Free

5 mg/1 mL

For intravenous or intramuscular use only.

Principal Display Panel - Syringe Label

1mL single use. For IV or IM Use Only. Rx Only

Midazolam
Injection, USP
Preservative Free CIV

5 mg/mL

BD Rx Inc.
Franklin Lakes,
NJ 07417

Principal Display Panel - Carton Label

Rx only NDC 76045-003-20

BD Simplist™

Midazolam CIV
Injection, USP

Preservative Free

10 mg/ 2 mL

(5mg/mL)

For Intravenous or Intramuscular use only.

Do NOT place syringe on a Sterile Field.

24 x 2mL Prefilled single-use syringes

Discard unused portion.

Principal Display Panel - Blister Pack Label

Rx only NDC 76045-003-20

BD Simplist™

Midazolam CIV
Injection, USP

Preservative Free

10 mg/2 mL

(5mg/mL)

For intravenous or intramuscular use only.

Principal Display Panel - Syringe Label

2mL single use. For IV or IM Use Only. Rx Only

Midazolam
Injection, USP
Preservative Free CIV

10 mg/ 2 mL

(5mg/mL)

BD Rx Inc.
Franklin Lakes,
NJ 07417

MIDAZOLAM 
midazolam hydrochloride injection, solution
Product Information
Product Type HUMAN PRESCRIPTION DRUG LABEL Item Code (Source) NDC:76045-001
Route of Administration INTRAVENOUS, INTRAMUSCULAR DEA Schedule CIV    
Active Ingredient/Active Moiety
Ingredient Name Basis of Strength Strength
Midazolam Hydrochloride (Midazolam) Midazolam 2 mg  in 2 mL
Inactive Ingredients
Ingredient Name Strength
Sodium chloride  
Sodium Hydroxide  
Hydrochloric Acid  
Water  
Packaging
# Item Code Package Description
1 NDC:76045-001-20 24 BLISTER PACK in 1 CARTON
1 1 SYRINGE, GLASS in 1 BLISTER PACK
1 2.0 mL in 1 SYRINGE, GLASS
Marketing Information
Marketing Category Application Number or Monograph Citation Marketing Start Date Marketing End Date
ANDA ANDA203460 10/03/2014
MIDAZOLAM 
midazolam hydrochloride injection, solution
Product Information
Product Type HUMAN PRESCRIPTION DRUG LABEL Item Code (Source) NDC:76045-002
Route of Administration INTRAVENOUS, INTRAMUSCULAR DEA Schedule CIV    
Active Ingredient/Active Moiety
Ingredient Name Basis of Strength Strength
Midazolam Hydrochloride (Midazolam) Midazolam 5 mg  in 1 mL
Inactive Ingredients
Ingredient Name Strength
Sodium chloride  
Sodium Hydroxide  
Hydrochloric Acid  
Water  
Packaging
# Item Code Package Description
1 NDC:76045-002-10 24 BLISTER PACK in 1 CARTON
1 1 SYRINGE, GLASS in 1 BLISTER PACK
1 1.0 mL in 1 SYRINGE, GLASS
Marketing Information
Marketing Category Application Number or Monograph Citation Marketing Start Date Marketing End Date
ANDA ANDA203460 10/03/2014
MIDAZOLAM 
midazolam hydrochloride injection, solution
Product Information
Product Type HUMAN PRESCRIPTION DRUG LABEL Item Code (Source) NDC:76045-003
Route of Administration INTRAVENOUS, INTRAMUSCULAR DEA Schedule CIV    
Active Ingredient/Active Moiety
Ingredient Name Basis of Strength Strength
Midazolam Hydrochloride (Midazolam) Midazolam 10 mg  in 2 mL
Inactive Ingredients
Ingredient Name Strength
Sodium chloride  
Sodium Hydroxide  
Hydrochloric Acid  
Water  
Packaging
# Item Code Package Description
1 NDC:76045-003-20 24 BLISTER PACK in 1 CARTON
1 1 SYRINGE, GLASS in 1 BLISTER PACK
1 2.0 mL in 1 SYRINGE, GLASS
Marketing Information
Marketing Category Application Number or Monograph Citation Marketing Start Date Marketing End Date
ANDA ANDA203460 10/03/2014
Labeler - BD Rx Inc. (964475045)
Establishment
Name Address ID/FEI Operations
BD Rx Inc. 964475045 MANUFACTURE(76045-001, 76045-002, 76045-003), LABEL(76045-001, 76045-002, 76045-003), PACK(76045-001, 76045-002, 76045-003), ANALYSIS(76045-001, 76045-002, 76045-003)
Revised: 08/2014
 
BD Rx Inc.
Hide
(web4)