Skip to main content

Drug Interactions between thiotepa and Tuinal

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

amobarbital secobarbital

Applies to: Tuinal (amobarbital / secobarbital) and Tuinal (amobarbital / secobarbital)

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (36)
  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
Moderate

amobarbital thiotepa

Applies to: Tuinal (amobarbital / secobarbital) and thiotepa

MONITOR: Coadministration with CYP450 3A4 and/or 2B6 inducers may decrease plasma concentrations of thiotepa and increase concentrations of its active metabolite triethylenephosphoramide (TEPA). Thiotepa is a prodrug that is primarily converted to TEPA by these isoenzymes. In a study involving a 42-year-old male with relapsing germ-cell cancer, the pharmacokinetics of thiotepa and its active metabolite (TEPA) were assessed during two high-dose chemotherapy courses (cyclophosphamide 1500 mg/m2/day, thiotepa 120 mg/m2/day, and carboplatin), with phenytoin initiated five days before the second course for seizure management. In the second course, TEPA exposure increased by 115% and thiotepa exposure decreased by 29%, resulting in a thiotepa dose reduction of nearly 40% on day 3 due to the increased risk of toxicity from higher TEPA exposure. Clinical data for thiotepa use in combination with other less potent CYP450 3A4 inducers or with CYP450 2B6 inducers are not available.

MANAGEMENT: Caution and closer monitoring for adverse effects is advised when thiotepa is used concurrently with CYP450 3A4 and/or 2B6 inducers. Patients should be more closely monitored for thiotepa-related toxicities such as myelosuppression, cutaneous toxicity, and neurotoxicity. A dosage reduction of thiotepa may be necessary. Pretreatment and subsequent blood counts may be used to guide dose adjustments in accordance with product labeling.

References (5)
  1. de Jonge ME, Huitema AD, van Dam SM, Beijnen JH, Rodenhuis S (2005) "Significant induction of cyclophosphamide and thiotepa metabolism by phenytoin." Cancer Chemother Pharmacol, 55, p. 507-10
  2. (2023) "Product Information. Thiotepa (thiotepa)." Meitheal Pharmaceuticals Inc.
  3. (2023) "Product Information. Tepadina (thiotepa)." Link Medical Products Pty Ltd T/A Link Pharmaceuticals, 3
  4. (2022) "Product Information. Thiotepa (thiotepa)." MSN Laboratories Europe Ltd
  5. (2021) "Product Information. Tepadina (thiotepa)." Adienne SA
Moderate

secobarbital thiotepa

Applies to: Tuinal (amobarbital / secobarbital) and thiotepa

MONITOR: Coadministration with CYP450 3A4 and/or 2B6 inducers may decrease plasma concentrations of thiotepa and increase concentrations of its active metabolite triethylenephosphoramide (TEPA). Thiotepa is a prodrug that is primarily converted to TEPA by these isoenzymes. In a study involving a 42-year-old male with relapsing germ-cell cancer, the pharmacokinetics of thiotepa and its active metabolite (TEPA) were assessed during two high-dose chemotherapy courses (cyclophosphamide 1500 mg/m2/day, thiotepa 120 mg/m2/day, and carboplatin), with phenytoin initiated five days before the second course for seizure management. In the second course, TEPA exposure increased by 115% and thiotepa exposure decreased by 29%, resulting in a thiotepa dose reduction of nearly 40% on day 3 due to the increased risk of toxicity from higher TEPA exposure. Clinical data for thiotepa use in combination with other less potent CYP450 3A4 inducers or with CYP450 2B6 inducers are not available.

MANAGEMENT: Caution and closer monitoring for adverse effects is advised when thiotepa is used concurrently with CYP450 3A4 and/or 2B6 inducers. Patients should be more closely monitored for thiotepa-related toxicities such as myelosuppression, cutaneous toxicity, and neurotoxicity. A dosage reduction of thiotepa may be necessary. Pretreatment and subsequent blood counts may be used to guide dose adjustments in accordance with product labeling.

References (5)
  1. de Jonge ME, Huitema AD, van Dam SM, Beijnen JH, Rodenhuis S (2005) "Significant induction of cyclophosphamide and thiotepa metabolism by phenytoin." Cancer Chemother Pharmacol, 55, p. 507-10
  2. (2023) "Product Information. Thiotepa (thiotepa)." Meitheal Pharmaceuticals Inc.
  3. (2023) "Product Information. Tepadina (thiotepa)." Link Medical Products Pty Ltd T/A Link Pharmaceuticals, 3
  4. (2022) "Product Information. Thiotepa (thiotepa)." MSN Laboratories Europe Ltd
  5. (2021) "Product Information. Tepadina (thiotepa)." Adienne SA

Drug and food interactions

Major

amobarbital food

Applies to: Tuinal (amobarbital / secobarbital)

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References (5)
  1. Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
  3. Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
  4. Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
  5. Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102
Major

secobarbital food

Applies to: Tuinal (amobarbital / secobarbital)

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References (5)
  1. Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
  3. Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
  4. Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
  5. Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.