Skip to main content

Drug Interactions between tetracaine topical and Urobiotic-250

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

phenazopyridine tetracaine topical

Applies to: Urobiotic-250 (oxytetracycline / phenazopyridine / sulfamethizole) and tetracaine topical

MONITOR: Some topical anesthetics can be systemically absorbed and cause methemoglobinemia, particularly when applied to mucous membranes. Coadministration with other oxidizing agents that can also induce methemoglobinemia such as injectable local anesthetics, antimalarials (e.g., chloroquine, primaquine, quinine, tafenoquine), nitrates and nitrites, sulfonamides, aminosalicylic acid, dapsone, dimethyl sulfoxide, flutamide, metoclopramide, nitrofurantoin, phenazopyridine, phenobarbital, phenytoin, and rasburicase may increase the risk. Additional risk factors include very young age (e.g., infants less than 6 months); application to inflamed/abraded areas or broken skin; anemia; cardiac or pulmonary disease; peripheral vascular disease; liver cirrhosis; shock; sepsis; acidosis; and genetic predisposition (e.g., NADH cytochrome-b5 reductase deficiency; glucose-6-phosphate dehydrogenase (G6PD) deficiency; hemoglobin M). There have been rare reports of significant methemoglobinemia associated with administration of topical anesthetics, primarily following application to mucous membranes prior to dental procedures or via the oropharyngeal route prior to procedures such as intubation, laryngoscopy, bronchoscopy, and endoscopy. Very rarely, methemoglobinemia has also been reported with use of anesthetic throat lozenges.

MANAGEMENT: Caution is advised when topical anesthetics are used concomitantly with other methemoglobin-inducing agents. Clinicians should be aware of the potential for methemoglobinemia, particularly when topical anesthetics are applied to mucous membranes or given via the oropharyngeal route. Signs and symptoms of methemoglobinemia may be delayed some hours after drug exposure. Patients or their caregivers should be advised to seek medical attention if they notice signs and symptoms of methemoglobinemia such as slate-grey cyanosis in buccal mucous membranes, lips, and nail beds; nausea; headache; dizziness; lightheadedness; lethargy; fatigue; dyspnea; tachypnea; tachycardia; palpitation; anxiety; and confusion. In severe cases, patients may progress to central nervous system depression, stupor, seizures, acidosis, cardiac arrhythmias, syncope, shock, coma, and death. Methemoglobinemia should be considered if central cyanosis is unresponsive to oxygen. Calculated oxygen saturation and pulse oximetry are generally not accurate in the setting of methemoglobinemia. The diagnosis can be confirmed by an elevated methemoglobin level of at least 10% using co-oximetry. Methemoglobin concentrations greater than 10% of total hemoglobin will typically cause cyanosis, and levels over 70% are frequently fatal. However, symptom severity is not always related to methemoglobin levels. Experts suggest that treatment of methemoglobinemia varies from supplemental oxygen and symptom support to the administration of methylene blue, depending on severity of symptoms and/or the presence of G6PD deficiency. Institutional guidelines and/or individual product labeling should be consulted for further guidance.

References (7)
  1. Karim A, Ahmed S, Siddiqui R, Mattana J (2001) "Methemoglobinemia complicating topical lidocaine used during endoscopic procedures." Am J Med, 111, p. 150-3
  2. (2005) "Product Information. Hurricaine (benzocaine topical)." Beutlich
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. Cerner Multum, Inc. "Australian Product Information."
  5. Guay J (2009) "Methemoglobinemia related to local anesthetics: a summary of 242 episodes." Anesth Analg, 108, p. 837-45
  6. Skold A, Cosco DL, Klein R (2011) "Methemoglobinemia: pathogenesis, diagnosis, and management." South Med J, 104, p. 757-61
  7. (2020) "Product Information. Chloraseptic (benzocaine-menthol topical)." Prestige Brands (formerly MedTech)
Moderate

sulfamethizole tetracaine topical

Applies to: Urobiotic-250 (oxytetracycline / phenazopyridine / sulfamethizole) and tetracaine topical

GENERALLY AVOID: Ester-type local anesthetics are hydrolyzed to paraaminobenzoic acid, which can inhibit the action of sulfonamides.

MONITOR: Ester-type local anesthetics can cause methemoglobinemia, and coadministration with other oxidizing agents that can also induce methemoglobinemia such as sulfonamides may increase the risk. Topical formulations of ester-type local anesthetics may be absorbed systemically and may also have the potential to induce methemoglobinemia, particularly when applied to mucous membranes. Additional risk factors include very young age (e.g., infants less than 6 months); application to inflamed/abraded areas or broken skin; anemia; cardiac or pulmonary disease; peripheral vascular disease; liver cirrhosis; shock; sepsis; acidosis; and genetic predisposition (e.g., NADH cytochrome-b5 reductase deficiency; glucose-6-phosphate dehydrogenase (G6PD) deficiency; hemoglobin M). There have been rare reports of significant methemoglobinemia associated with administration of topical anesthetics, primarily following application to mucous membranes prior to dental procedures or via the oropharyngeal route prior to procedures such as intubation, laryngoscopy, bronchoscopy, and endoscopy. Very rarely, methemoglobinemia has also been reported with use of anesthetic throat lozenges.

MANAGEMENT: The administration of injectable ester-type local anesthetics to patients who are on sulfonamides should generally be avoided. Amide-type anesthetics are not expected to inhibit the action of sulfonamides and may be considered as alternatives (e.g., bupivacaine, levobupivacaine, lidocaine, mepivacaine). However, caution is advised due to the potential for development of methemoglobinemia. Likewise, caution should be exercised when topical formulations of ester-type local anesthetics are administered to patients receiving sulfonamides, particularly when applied to mucous membranes or given via the oropharyngeal route. Signs and symptoms of methemoglobinemia may be delayed some hours after drug exposure. Patients or their caregivers should be advised to seek medical attention if they notice signs and symptoms of methemoglobinemia such as slate-grey cyanosis in buccal mucous membranes, lips, and nail beds; nausea; headache; dizziness; lightheadedness; lethargy; fatigue; dyspnea; tachypnea; tachycardia; palpitation; anxiety; and confusion. In severe cases, patients may progress to central nervous system depression, stupor, seizures, acidosis, cardiac arrhythmias, syncope, shock, coma, and death. Methemoglobinemia should be considered if central cyanosis is unresponsive to oxygen. Calculated oxygen saturation and pulse oximetry are generally not accurate in the setting of methemoglobinemia. The diagnosis can be confirmed by an elevated methemoglobin level of at least 10% using co-oximetry. Methemoglobin concentrations greater than 10% of total hemoglobin will typically cause cyanosis, and levels over 70% are frequently fatal. However, symptom severity is not always related to methemoglobin levels. Mild cases often respond to withdrawal of offending agents and symptomatic support. If patient does not respond to administration of oxygen, clinically significant or symptomatic methemoglobinemia can be treated with methylene blue 1 to 2 mg/kg by slow intravenous injection over 5 to 10 minutes, which may be repeated within 30 to 60 minutes if necessary. Higher dosages of methylene blue (usually greater than 7 mg/kg) should be avoided, as it can paradoxically exacerbate methemoglobinemia. Additionally, methylene blue is ineffective and can cause hemolytic anemia in patients with G6PD deficiency. These patients may be treated with exchange transfusion, dialysis, and/or hyperbaric oxygenation in addition to symptomatic support.

References (1)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."

Drug and food interactions

Moderate

oxytetracycline food

Applies to: Urobiotic-250 (oxytetracycline / phenazopyridine / sulfamethizole)

ADJUST DOSING INTERVAL: Administration with food, particularly dairy products, significantly reduces tetracycline absorption. The calcium content in some foods can form nonabsorbable chelates with tetracycline.

MANAGEMENT: Tetracycline should be administered one hour before or two hours after meals. Because oral tetracycline has caused rare cases of esophagitis and esophageal ulceration, patients should be advised to take tetracycline with a large glass of water while standing or sitting upright and to avoid laying down immediately afterwards.

References (5)
  1. (2001) "Product Information. Achromycin (tetracycline)." Lederle Laboratories
  2. (2001) "Product Information. Declomycin (demeclocycline)." Lederle Laboratories
  3. (2024) "Product Information. Pylera (bismuth subcitrate potassium/metronidazole/tetracycline)." Flynn Pharma Ltd
  4. (2025) "Product Information. Pylera (bismuth subcitrate potassium/metronidazo/TCN)." H2-Pharma LLC
  5. Laboratoires Juvise Pharmaceuticals (2025) Bismuth subcitrate potassium, metronidazole, tetracycline hydrochloride capsules (Pylera) - product monograph. https://pdf.hres.ca/dpd_pm/00076786.PDF
Moderate

oxytetracycline food

Applies to: Urobiotic-250 (oxytetracycline / phenazopyridine / sulfamethizole)

GENERALLY AVOID: The bioavailability of oral tetracyclines and iron salts may be significantly decreased during concurrent administration. Therapeutic failure may result. The proposed mechanism is chelation of tetracyclines by the iron cation, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. In ten healthy volunteers, simultaneous oral administration of ferrous sulfate 200 mg and single doses of various tetracyclines (200 mg to 500 mg) resulted in reductions in the serum levels of methacycline and doxycycline by 80% to 90%, oxytetracycline by 50% to 60%, and tetracycline by 40% to 50%. In another study, 300 mg of ferrous sulfate reduced the absorption of tetracycline by 81% and that of minocycline by 77%. Conversely, the absorption of iron has been shown to be decreased by up to 78% in healthy subjects and up to 65% in patients with iron depletion when ferrous sulfate 250 mg was administered with tetracycline 500 mg. Available data suggest that administration of iron 3 hours before or 2 hours after a tetracycline largely prevents the interaction with most tetracyclines except doxycycline. Due to extensive enterohepatic cycling, iron binding may occur with doxycycline even when it is given parenterally. It has also been shown that when iron is administered up to 11 hours after doxycycline, serum concentrations of doxycycline may still be reduced by 20% to 45%.

MANAGEMENT: Coadministration of a tetracycline with any iron-containing product should be avoided if possible. Otherwise, patients should be advised to stagger the times of administration by at least three to four hours, although separating the doses may not prevent the interaction with doxycycline.

References (11)
  1. Neuvonen PJ (1976) "Interactions with the absorption of tetracyclines." Drugs, 11, p. 45-54
  2. Gothoni G, Neuvonen PJ, Mattila M, Hackman R (1972) "Iron-tetracycline interaction: effect of time interval between the drugs." Acta Med Scand, 191, p. 409-11
  3. Venho VM, Salonen RO, Mattila MJ (1978) "Modification of the pharmacokinetics of doxycycline in man by ferrous sulphate or charcoal." Eur J Clin Pharmacol, 14, p. 277-80
  4. (2002) "Product Information. Minocin (minocycline)." Lederle Laboratories
  5. Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
  6. Bateman FJ (1970) "Effects of tetracyclines." Br Med J, 4, p. 802
  7. Neuvonen PJ, Gothoni G, Hackman R, Bjorksten K (1970) "Interference of iron with the absorption of tetracyclines in man." Br Med J, 4, p. 532-4
  8. Greenberger NJ (1971) "Absorption of tetracyclines: interference by iron." Ann Intern Med, 74, p. 792-3
  9. Neuvonen PJ, Penttila O (1974) "Effect of oral ferrous sulphate on the half-life of doxycycline in man." Eur J Clin Pharmacol, 7, p. 361-3
  10. (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
  11. (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.