Skip to main content

Drug Interactions between Prevpac and Tri-Lo-Marzia

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

clarithromycin ethinyl estradiol

Applies to: Prevpac (amoxicillin / clarithromycin / lansoprazole) and Tri-Lo-Marzia (ethinyl estradiol / norgestimate)

MONITOR CLOSELY: Coadministration of clarithromycin, telithromycin, or troleandomycin may increase the plasma concentrations of drugs that are substrates of the CYP450 3A4 isoenzyme, by reducing their clearance, as these antibiotics are potent inhibitors of this isoenzyme. Many estrogen and progestin type medications are CYP450 3A4 substrates. These medications are used for a variety of purposes including, but not limited to, contraception, acne treatment, hormone replacement therapy, and appetite stimulation. When telithromycin was co-administered with oral contraceptives containing ethinyl estradiol and levonorgestrel, studies showed that the systemic concentration (AUC) of ethinyl estradiol did not change and the AUC of levonorgestrel increased by 50%. The study showed that telithromycin did not interfere with the anti-ovulatory effect of oral contraceptives containing ethinyl estradiol and levonorgestrel.

MANAGEMENT: Caution is advised if clarithromycin, telithromycin, or troleandomycin must be used concurrently with medications that undergo metabolism by CYP450 3A4. Patients should be monitored for increased adverse effects from the hormonal treatment if it must be co-administered with one of these antibiotics. Some serious side effects associated with hormonal treatment include, but are not limited to, cardiovascular disease (e.g., venous thromboembolism, myocardial infarction, and stroke); breast cancer; loss of bone mineral density; changes in mood; cholestatic jaundice; and dementia. Some of these side effects are affected by other factors such as medication dosage, concurrent medications, age, smoking status, and other disease states. If concurrent therapy with any of these antibiotics is necessary, please refer to the product labeling for more specific adverse effects to monitor for and counsel the patient and/or the patient's caregiver on the risks and benefits of concurrent therapy.

MONITOR CLOSELY: Estrogenic steroids, but not progestins, undergo enterohepatic cycling. It is possible that antimicrobials may interfere with the enterohepatic recirculation of estrogens by decreasing bacteria in the gastrointestinal tract that are responsible for regenerating parent estrogen molecules following first-pass metabolism. Most of the research regarding this possible interaction has been done with oral contraceptives; however, all estrogens appear to undergo enterohepatic recirculation so theoretically this interaction is a possibility with estrogen containing medications that are being used for alternative purposes. The risk appears to be small, and supportive data are primarily limited to anecdotal evidence from case reports and findings from uncontrolled or poorly controlled studies. Most antimicrobials, except for enzyme inducing medications like the rifamycins and possibly griseofulvin, have not been shown to significantly increase the clearance of estrogens present in combined hormonal contraceptives. It is possible that a small number of women may be more sensitive to the effects of antimicrobials on estrogen disposition in vivo, but risk factors or genetic predispositions have yet to be identified.

MANAGEMENT: If a person is using estrogen for a purpose other than contraception, it is important to note that there is a theoretical possibility of lower levels of systemic estrogen available during treatment with an antibiotic due to interference with enterohepatic cycling. These patients should be counseled to report any changes in efficacy of the hormonal product to their healthcare provider. In the case of contraception specifically, the Centers for Disease Control and Prevention do not consider most broad-spectrum antibiotics to significantly interfere with the effectiveness of combined hormonal contraception. However, the manufacturers of certain combined hormonal contraceptives and/or certain antibiotics do recommend using a back-up method of birth control for varying amounts of time; therefore, consulting the product labeling of each medication involved is advised. Some illnesses, as well as some antibiotics, may cause nausea, vomiting, and/or diarrhea. If the patient vomits within a few hours of taking an oral contraceptive pill, consult the product labeling for instructions on what to do in the event of a missed pill. Some authorities recommend a back-up method of birth control if an individual has persistent vomiting or diarrhea.

References

  1. Curtis KM, Tepper NK, Jatlaoui TC, et al. "U.S. medical eligibility criteria (US MEC) for contraceptive use. https://www.cdc.gov/reproductivehealth/contraception/mmwr/mec/index.html" (2023):
  2. Faculty of Sexual & Reproductive Healthcare "FSRH CEU response to study: analysis of reports of unintended pregnancies associated with the combined use of non-enzyme inducing antibiotics and hormonal contraceptives - february 2021 https://www.fsrh.org/standards-and-guidance/documents/fsrh-ceu-respo" (2023):
  3. Faculty of Sexual & Reproductive Healthcare "FSRH CEU guidance: drug interactions with hormonal contraception (may 2022) https://www.fsrh.org/standards-and-guidance/documents/ceu-clinical-guidance-drug-interactions-with-hormonal/" (2023):
  4. Simmons KB, Haddad LB, Nanda K, Curtis KM "Drug interactions between non-rifamycin antibiotics and hormonal contraception: a systemic review." Am J Obstet Gynecol 218 (2018): 88-97.e14
  5. Zhanel GG, Siemens S, Slayter K, Mandell L "Antibiotic and oral contraceptive drug interactions: is there a need for concern?" Can J Infect Dis 10 (1999): 429-33
  6. Black A, Francoeur D, Rowe T, et al. "SOGC clinical practice guidelines canadian contraception consensus https://www.jogc.com/article/S1701-2163(16)30260-2/pdf" (2023):
  7. Allen K "Contraception - common issues and practical suggestions." Aust Fam Physician 41 (2012): 770-2
  8. "Product Information. Ketek (telithromycin)." Physicians Total Care (2010):
  9. "Product Information. Ketek (telithromycin)." Aventis Pharmaceuticals (2009):
  10. "Product Information. Ketek (telithromycine)." SANOFI BELGIUM (2011):
  11. "Product Information. Clarithromycin (clarithromycin)." Alembic Pharmaceuticals (2023):
  12. "Product Information. Clarithromycin ER (clarithromycin)." Actavis U.S. (Purepac Pharmaceutical Company) (2020):
  13. "Product Information. Act Clarithromycin XL (clarithromycin)." Actavis Pharma Company (2020):
  14. "Product Information. Biaxin BID (clarithromycin)." BGP Pharma Inc (2021):
  15. "Product Information. CLARITHROMYcin (Noumed) (cLARITHROMYcin)." Blooming Health Pty Ltd (2021):
  16. "Product Information. Klacid (cLARITHROMYcin)." Mylan Health Pty Ltd (2022):
  17. "Product Information. Klaricid IV (clarithromycin)." Viatris UK Healthcare Ltd (2022):
  18. "Product Information. Clarithromycin (clarithromycin)." Ranbaxy (UK) Ltd (2023):
  19. "Product Information. Clarithromycin (clarithromycin)." Milpharm Ltd (2023):
  20. "Product Information. Mycifor XL (clarithromycin)." Forum Products Ltd (2015):
  21. FDA. United States Food and Drug Administration "Drug development and drug interactions: table of substrates, inhibitors and inducers. https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers" (2023):
View all 21 references

Switch to consumer interaction data

Major

clarithromycin norgestimate

Applies to: Prevpac (amoxicillin / clarithromycin / lansoprazole) and Tri-Lo-Marzia (ethinyl estradiol / norgestimate)

MONITOR CLOSELY: Coadministration of clarithromycin, telithromycin, or troleandomycin may increase the plasma concentrations of drugs that are substrates of the CYP450 3A4 isoenzyme, by reducing their clearance, as these antibiotics are potent inhibitors of this isoenzyme. Many estrogen and progestin type medications are CYP450 3A4 substrates. These medications are used for a variety of purposes including, but not limited to, contraception, acne treatment, hormone replacement therapy, and appetite stimulation. When telithromycin was co-administered with oral contraceptives containing ethinyl estradiol and levonorgestrel, studies showed that the systemic concentration (AUC) of ethinyl estradiol did not change and the AUC of levonorgestrel increased by 50%. The study showed that telithromycin did not interfere with the anti-ovulatory effect of oral contraceptives containing ethinyl estradiol and levonorgestrel.

MANAGEMENT: Caution is advised if clarithromycin, telithromycin, or troleandomycin must be used concurrently with medications that undergo metabolism by CYP450 3A4. Patients should be monitored for increased adverse effects from the hormonal treatment if it must be co-administered with one of these antibiotics. Some serious side effects associated with hormonal treatment include, but are not limited to, cardiovascular disease (e.g., venous thromboembolism, myocardial infarction, and stroke); breast cancer; loss of bone mineral density; changes in mood; cholestatic jaundice; and dementia. Some of these side effects are affected by other factors such as medication dosage, concurrent medications, age, smoking status, and other disease states. If concurrent therapy with any of these antibiotics is necessary, please refer to the product labeling for more specific adverse effects to monitor for and counsel the patient and/or the patient's caregiver on the risks and benefits of concurrent therapy.

MONITOR CLOSELY: Estrogenic steroids, but not progestins, undergo enterohepatic cycling. It is possible that antimicrobials may interfere with the enterohepatic recirculation of estrogens by decreasing bacteria in the gastrointestinal tract that are responsible for regenerating parent estrogen molecules following first-pass metabolism. Most of the research regarding this possible interaction has been done with oral contraceptives; however, all estrogens appear to undergo enterohepatic recirculation so theoretically this interaction is a possibility with estrogen containing medications that are being used for alternative purposes. The risk appears to be small, and supportive data are primarily limited to anecdotal evidence from case reports and findings from uncontrolled or poorly controlled studies. Most antimicrobials, except for enzyme inducing medications like the rifamycins and possibly griseofulvin, have not been shown to significantly increase the clearance of estrogens present in combined hormonal contraceptives. It is possible that a small number of women may be more sensitive to the effects of antimicrobials on estrogen disposition in vivo, but risk factors or genetic predispositions have yet to be identified.

MANAGEMENT: If a person is using estrogen for a purpose other than contraception, it is important to note that there is a theoretical possibility of lower levels of systemic estrogen available during treatment with an antibiotic due to interference with enterohepatic cycling. These patients should be counseled to report any changes in efficacy of the hormonal product to their healthcare provider. In the case of contraception specifically, the Centers for Disease Control and Prevention do not consider most broad-spectrum antibiotics to significantly interfere with the effectiveness of combined hormonal contraception. However, the manufacturers of certain combined hormonal contraceptives and/or certain antibiotics do recommend using a back-up method of birth control for varying amounts of time; therefore, consulting the product labeling of each medication involved is advised. Some illnesses, as well as some antibiotics, may cause nausea, vomiting, and/or diarrhea. If the patient vomits within a few hours of taking an oral contraceptive pill, consult the product labeling for instructions on what to do in the event of a missed pill. Some authorities recommend a back-up method of birth control if an individual has persistent vomiting or diarrhea.

References

  1. Curtis KM, Tepper NK, Jatlaoui TC, et al. "U.S. medical eligibility criteria (US MEC) for contraceptive use. https://www.cdc.gov/reproductivehealth/contraception/mmwr/mec/index.html" (2023):
  2. Faculty of Sexual & Reproductive Healthcare "FSRH CEU response to study: analysis of reports of unintended pregnancies associated with the combined use of non-enzyme inducing antibiotics and hormonal contraceptives - february 2021 https://www.fsrh.org/standards-and-guidance/documents/fsrh-ceu-respo" (2023):
  3. Faculty of Sexual & Reproductive Healthcare "FSRH CEU guidance: drug interactions with hormonal contraception (may 2022) https://www.fsrh.org/standards-and-guidance/documents/ceu-clinical-guidance-drug-interactions-with-hormonal/" (2023):
  4. Simmons KB, Haddad LB, Nanda K, Curtis KM "Drug interactions between non-rifamycin antibiotics and hormonal contraception: a systemic review." Am J Obstet Gynecol 218 (2018): 88-97.e14
  5. Zhanel GG, Siemens S, Slayter K, Mandell L "Antibiotic and oral contraceptive drug interactions: is there a need for concern?" Can J Infect Dis 10 (1999): 429-33
  6. Black A, Francoeur D, Rowe T, et al. "SOGC clinical practice guidelines canadian contraception consensus https://www.jogc.com/article/S1701-2163(16)30260-2/pdf" (2023):
  7. Allen K "Contraception - common issues and practical suggestions." Aust Fam Physician 41 (2012): 770-2
  8. "Product Information. Ketek (telithromycin)." Physicians Total Care (2010):
  9. "Product Information. Ketek (telithromycin)." Aventis Pharmaceuticals (2009):
  10. "Product Information. Ketek (telithromycine)." SANOFI BELGIUM (2011):
  11. "Product Information. Clarithromycin (clarithromycin)." Alembic Pharmaceuticals (2023):
  12. "Product Information. Clarithromycin ER (clarithromycin)." Actavis U.S. (Purepac Pharmaceutical Company) (2020):
  13. "Product Information. Act Clarithromycin XL (clarithromycin)." Actavis Pharma Company (2020):
  14. "Product Information. Biaxin BID (clarithromycin)." BGP Pharma Inc (2021):
  15. "Product Information. CLARITHROMYcin (Noumed) (cLARITHROMYcin)." Blooming Health Pty Ltd (2021):
  16. "Product Information. Klacid (cLARITHROMYcin)." Mylan Health Pty Ltd (2022):
  17. "Product Information. Klaricid IV (clarithromycin)." Viatris UK Healthcare Ltd (2022):
  18. "Product Information. Clarithromycin (clarithromycin)." Ranbaxy (UK) Ltd (2023):
  19. "Product Information. Clarithromycin (clarithromycin)." Milpharm Ltd (2023):
  20. "Product Information. Mycifor XL (clarithromycin)." Forum Products Ltd (2015):
  21. FDA. United States Food and Drug Administration "Drug development and drug interactions: table of substrates, inhibitors and inducers. https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers" (2023):
View all 21 references

Switch to consumer interaction data

Moderate

amoxicillin ethinyl estradiol

Applies to: Prevpac (amoxicillin / clarithromycin / lansoprazole) and Tri-Lo-Marzia (ethinyl estradiol / norgestimate)

MONITOR: The effectiveness of estrogen-containing medications may be impaired by concomitant treatment with antimicrobial agents. During metabolism, the estrogen component is conjugated, resulting in sulfation or glucuronidation of the original estrogenic steroid. The conjugates reach the intestine by way of the bile duct where hydrolytic enzymes of intestinal bacteria break down the conjugates into free, active estrogenic hormone. The active hormone is then available for enterohepatic cycling, which helps to maintain estrogen levels. It is important to note that the progestin component of a combined hormonal product does not undergo this process. It has been suggested that broad-spectrum antibiotics may reduce the effectiveness of estrogen-containing contraceptives because of their potential to reduce the number of intestinal bacteria and thus interfere with enterohepatic cycling of estrogen. Most of the research regarding this possible interaction has been done with oral contraceptives, but all estrogens appear to undergo enterohepatic recirculation so theoretically this interaction is a possibility with estrogen containing medications that are being used for alternative purposes. However, the risk appears to be small, and supportive data are primarily limited to anecdotal evidence from case reports and findings from uncontrolled or poorly controlled studies. Most antimicrobials, with the exception of enzyme inducing medications like the rifamycins and possibly griseofulvin, have not been shown to significantly increase the clearance of oral contraceptive estrogens. It is possible that a small number of women may be more sensitive to the effects of antimicrobials on estrogen disposition in vivo, but risk factors or genetic predispositions have yet to be identified.

MANAGEMENT: If a person is using estrogen for a purpose other than contraception, it is important to note that there is a theoretical possibility of lower levels of systemic estrogen available during treatment with an antibiotic due to interference with enterohepatic cycling. These patients should be counseled to report any changes in efficacy of the hormonal product to their healthcare provider. In the case of contraception specifically, the Centers for Disease Control and Prevention do not consider most broad-spectrum antibiotics to significantly interfere with the effectiveness of combined hormonal contraception. However, the manufacturers of certain combined hormonal contraceptives and/or certain antibiotics do recommend using a back-up method of birth control for varying amounts of time; therefore, consulting the product labeling of each medication involved is advised. Some illnesses, as well as some antibiotics, may cause nausea, vomiting, and/or diarrhea. If the patient vomits within a few hours of taking an oral contraceptive pill, consult the product labeling for instructions on what to do in the event of a missed pill. Some authorities recommend a back-up method of birth control if an individual has persistent vomiting or diarrhea.

References

  1. Friedman CI, Huneke AL, Kim MH, Powell J "The effect of ampicillin on oral contraceptive effectiveness." Obstet Gynecol 55 (1980): 33-7
  2. Back DJ, Breckenridge AM, MacIver M, et al. "The effects of ampicillin on oral contraceptive steroids in women." Br J Clin Pharmacol 14 (1982): 43-8
  3. Neely JL, Abate M, Swinker M, D'Angio R "The effect of doxycycline on serum levels of ethinyl estradiol, norethindrone, and endogenous progesterone." Obstet Gynecol 77 (1991): 416-20
  4. Joshi JV, Joshi UM, Sankholi GM, et al. "A study of interaction of low-dose combination oral contraceptive with ampicillin and metronidazole." Contraception 22 (1980): 643-52
  5. Baciewicz AM "Oral contraceptive drug interactions." Ther Drug Monit 7 (1985): 26-35
  6. Bint AJ, Burtt I "Adverse antibiotic drug interactions." Drugs 20 (1980): 57-68
  7. Dossetor J "Drug interactions with oral contraceptives." Br Med J 4 (1975): 467-8
  8. DeSano EA, Hurley SC "Possible interactions of antihistamines and antibiotics with oral contraceptive effectiveness." Fertil Steril 37 (1982): 853-4
  9. Szoka PR, Edgren RA "Drug interactions with oral contraceptives: compilation and analysis of an adverse experience report database." Fertil Steril 49(5 Suppl) (1988): s31-8
  10. Barnett ML "Inhibition of oral contraceptive effectiveness by concurrent antibiotic administration." J Periodontol 56 (1985): 18-20
  11. "Product Information. Declomycin (demeclocycline)." Lederle Laboratories PROD (2001):
  12. London BM, Lookingbill DP "Frequency of pregnancy in acne patients taking oral antibiotics and oral contraceptives." Arch Dermatol 130 (1994): 392-3
  13. Bacon JF, Shenfield GM "Pregnancy attributable to interaction between tetracycline and oral contraceptives." Br Med J 280 (1980): 293
  14. Fazio A "Oral contraceptive drug interactions: important considerations." South Med J 84 (1991): 997-1002
  15. Back DJ, Orme ML "Pharmacokinetic drug interactions with oral contraceptives." Clin Pharmacokinet 18 (1990): 472-84
  16. Back DJ, Tjia J, Martin C, Millar E, Mant T, Morrison P, Orme M "The lack of interaction between temafloxacin and combined oral contraceptive steroids." Contraception 43 (1991): 317-23
  17. Orme ML, Back DJ "Interactions between oral contraceptive steroids and broad-spectrum antibiotics." Clin Exp Dermatol 11 (1986): 327-31
  18. Wermeling DP, Chandler MH, Sides GD, Collins D, Muse KN "Dirithromycin increases ethinyl estradiol clearance without allowing ovulation." Obstet Gynecol 86 (1995): 78-84
  19. Silber TJ "Apparent oral contraceptive failure associated with antibiotic administration." J Adolesc Health Care 4 (1983): 287-9
  20. Bollen M "Use of antibiotics when taking the oral contraceptive pill." Aust Fam Physician 24 (1995): 928-9
  21. Kleier DJ, Tucker JE "Oral contraceptive failure secondary to dentally prescribed drugs: fact or fiction?" J Colo Dent Assoc 66 (1987): 5-6
  22. Back DJ, Breckenridge AM, Crawford FE, MacIver M, Orne ML, Rowe PH "Interindividual variation and drug interactions with hormonal steroid contraceptives." Drugs 21 (1981): 46-61
  23. Helms SE, Bredle DL, Zajic J, Jarjoura D, Brodell RT, Krishnarao I "Oral contraceptive failure rates and oral antibiotics." J Am Acad Dermatol 36 (1997): 705-10
  24. Weisberg E "Interactions between oral contraceptives and antifungals antibacterials - Is contraceptive failure the result?." Clin Pharmacokinet 36 (1999): 309-13
  25. Burroughs KE, Chambliss ML "Antibiotics and oral contraceptive failure." Arch Fam 9 (2000): 81-2
  26. Weaver K, Glasier A "Interaction between broad-spectrum antibiotics and the combined oral contraceptive pill: a literature review." Contraception 59 (1999): 71-8
  27. King VJ "OC failure rates and oral antibiotics." J Fam Pract 45 (1997): 104-5
  28. Zachariassen RD "Loss of oral contraceptive efficacy by concurrent antibiotic administration." Women Health 22 (1994): 17-26
  29. Dickinson BD, Altman RD, Nielsen NH, Sterling ML "Drug interactions between oral contraceptives and antibiotics." Obstet Gynecol 98(5 Pt 1) (2001): 853-60
  30. Archer JS, Archer DF "Oral contraceptive efficacy and antibiotic interaction: A myth debunked." J Am Acad Dermatol 46 (2002): 917-23
  31. Orme M, Back DJ "Oral contraceptive steroids--pharmacological issues of interest to the prescribing physician." Adv Contracept 7 (1991): 325-31
  32. DeRossi SS, Hersh EV "Antibiotics and oral contraceptives." Dent Clin North Am 46 (2002): 653-64
  33. "FFPRHC Guidance (April 2005). Drug interactions with hormonal contraception." J Fam Plann Reprod Health Care 31 (2005): 139-51
  34. Bauer KL, Wolf D, Patel M, Vinson DC "Clinical inquiries. Do antibiotics interfere with the efficacy of oral contraceptives?" J Fam Pract 54 (2005): 1079-80
  35. Back DJ, Grimmer SF, Orme ML, Proudlove D, Mann RD, Breckenridge AM "Evaluation of Committee on Safety of Medicines yellow card reports on oral contraceptive-drug interactions with anticonvulsants and antibiotics." Br J Clin Pharmacol 25 (1988): 527-32
  36. "Product Information. Arikayce (amikacin liposome)." Insmed Incorporated (2018):
  37. "Product Information. Nextstellis (drospirenone-estetrol)." Mayne Pharma (2021):
  38. "Product Information. Nextstellis (drospirenone-estetrol)." Mayne Pharma International Pty Ltd v 2.0 (2022):
  39. Curtis KM, Tepper NK, Jatlaoui TC, et al. "U.S. medical eligibility criteria (US MEC) for contraceptive use. https://www.cdc.gov/reproductivehealth/contraception/mmwr/mec/index.html" (2023):
  40. Faculty of Sexual & Reproductive Healthcare "FSRH CEU response to study: analysis of reports of unintended pregnancies associated with the combined use of non-enzyme inducing antibiotics and hormonal contraceptives - february 2021 https://www.fsrh.org/standards-and-guidance/documents/fsrh-ceu-respo" (2023):
  41. Faculty of Sexual & Reproductive Healthcare "FSRH CEU guidance: drug interactions with hormonal contraception (may 2022) https://www.fsrh.org/standards-and-guidance/documents/ceu-clinical-guidance-drug-interactions-with-hormonal/" (2023):
  42. Simmons KB, Haddad LB, Nanda K, Curtis KM "Drug interactions between non-rifamycin antibiotics and hormonal contraception: a systemic review." Am J Obstet Gynecol 218 (2018): 88-97.e14
  43. Zhanel GG, Siemens S, Slayter K, Mandell L "Antibiotic and oral contraceptive drug interactions: is there a need for concern?" Can J Infect Dis 10 (1999): 429-33
  44. Black A, Francoeur D, Rowe T, et al. "SOGC clinical practice guidelines canadian contraception consensus https://www.jogc.com/article/S1701-2163(16)30260-2/pdf" (2023):
  45. Allen K "Contraception - common issues and practical suggestions." Aust Fam Physician 41 (2012): 770-2
View all 45 references

Switch to consumer interaction data

Moderate

clarithromycin lansoprazole

Applies to: Prevpac (amoxicillin / clarithromycin / lansoprazole) and Prevpac (amoxicillin / clarithromycin / lansoprazole)

MONITOR: Coadministration with clarithromycin may increase the plasma concentrations of lansoprazole. The proposed mechanism is clarithromycin inhibition of intestinal (first-pass) and hepatic metabolism of lansoprazole via CYP450 3A4. Although lansoprazole is primarily metabolized by CYP450 2C19 in the liver, 3A4-mediated metabolism is the predominant pathway in individuals who are 2C19-deficient (approximately 3% to 5% of the Caucasian and 17% to 20% of the Asian population). Additionally, inhibition of P-glycoprotein intestinal efflux transporter by clarithromycin may also contribute to the interaction, resulting in increased bioavailability of lansoprazole. In 18 healthy volunteers--six each of homozygous extensive metabolizers (EMs), heterozygous EMs, and poor metabolizers (PMs) of CYP450 2C19--clarithromycin (400 mg orally twice a day for 6 days) increased the peak plasma concentration (Cmax) of a single 60 mg oral dose of lansoprazole by 1.47, 1.71- and 1.52-fold, respectively, and area under the concentration-time curve (AUC) by 1.55-, 1.74- and 1.80-fold, respectively, in each of these groups compared to placebo. The AUC ratio of lansoprazole to lansoprazole sulphone, which is considered an index of CYP450 3A4 activity, was significantly increased by clarithromycin in all three groups. However, elimination half-life of lansoprazole was prolonged by 1.54-fold only in PMs. Mild diarrhea was reported in two subjects and mild abdominal disturbance in six subjects during clarithromycin coadministration. These side effects continued until day 6 and ameliorated the day after discontinuation of clarithromycin, whereas no adverse events were reported during placebo administration or after lansoprazole plus placebo. In another study, clarithromycin induced dose-dependent increases in the plasma concentration of lansoprazole in a group of 20 patients receiving treatment for H. pylori eradication. Mean 3-hour plasma lansoprazole concentration was 385 ng/mL for the control subjects who received lansoprazole 30 mg and amoxicillin 750 mg twice a day for 7 days; 696 ng/mL for patients coadministered clarithromycin 200 mg twice a day; and 947 ng/mL for patients coadministered clarithromycin 400 mg twice a day.

MANAGEMENT: Although lansoprazole is generally well tolerated, caution may be advised during coadministration with clarithromycin, particularly if higher dosages of one or both drugs are used. Dosage adjustment may be necessary in patients who experience excessive adverse effects of lansoprazole.

References

  1. Ushiama H, Echizen H, Nachi S, Ohnishi A "Dose-dependent inhibition of CYP3A activity by clarithromycin during Helicobacter pylori eradication therapy assessed by changes in plasma lansoprazole levels and partial cortisol clearance to 6beta-hydroxycortisol." Clin Pharmacol Ther 72 (2002): 33-43
  2. Saito M, Yasui-Furukori N, Uno T, et al. "Effects of clarithromycin on lansoprazole pharmacokinetics between CYP2C19 genotypes." Br J Clin Pharmacol 59 (2005): 302-9
  3. Miura M, Tada H, Yasui-Furukori N, et al. "Effect of clarithromycin on the enantioselective disposition of lansoprazole in relation to CYP2C19 genotypes." Chirality 17 (2005): 338-344

Switch to consumer interaction data

Minor

amoxicillin clarithromycin

Applies to: Prevpac (amoxicillin / clarithromycin / lansoprazole) and Prevpac (amoxicillin / clarithromycin / lansoprazole)

Although some in vitro data indicate synergism between macrolide antibiotics and penicillins, other in vitro data indicate antagonism. When these drugs are given together, neither has predictable therapeutic efficacy. Data are available for erythromycin, although theoretically this interaction could occur with any macrolide. Except for monitoring of the effectiveness of antibiotic therapy, no special precautions appear to be necessary.

References

  1. Strom J "Penicillin and erythromycin singly and in combination in scarlatina therapy and the interference between them." Antibiot Chemother 11 (1961): 694-7
  2. Cohn JR, Jungkind DL, Baker JS "In vitro antagonism by erythromycin of the bactericidal action of antimicrobial agents against common respiratory pathogens." Antimicrob Agents Chemother 18 (1980): 872-6
  3. Penn RL, Ward TT, Steigbigel RT "Effects of erythromycin in combination with penicillin, ampicillin, or gentamicin on the growth of listeria monocytogenes." Antimicrob Agents Chemother 22 (1982): 289-94

Switch to consumer interaction data

Drug and food interactions

Moderate

norgestimate food

Applies to: Tri-Lo-Marzia (ethinyl estradiol / norgestimate)

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther 49 (1991): 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  4. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie 49 (1994): 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  8. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther 58 (1995): 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol 36 (1996): 469-76
  11. Majeed A, Kareem A "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol 10 (1996): 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol 42 (1996): p662
  13. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther 63 (1998): 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet 23 (1998): 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther 64 (1998): 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther 64 (1998): 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  22. Eagling VA, Profit L, Back DJ "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol 48 (1999): 543-52
  23. Damkier P, Hansen LL, Brosen K "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol 48 (1999): 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther 21 (1999): 1890-9
  25. Dresser GK, Spence JD, Bailey DG "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet 38 (2000): 41-57
  26. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol 49 (2000): 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit 23 (2001): 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol 44 (1993): 295-8
  32. Flanagan D "Understanding the grapefruit-drug interaction." Gen Dent 53 (2005): 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Minor

clarithromycin food

Applies to: Prevpac (amoxicillin / clarithromycin / lansoprazole)

Grapefruit juice may delay the gastrointestinal absorption of clarithromycin but does not appear to affect the overall extent of absorption or inhibit the metabolism of clarithromycin. The mechanism of interaction is unknown but may be related to competition for intestinal CYP450 3A4 and/or absorptive sites. In an open-label, randomized, crossover study consisting of 12 healthy subjects, coadministration with grapefruit juice increased the time to reach peak plasma concentration (Tmax) of both clarithromycin and 14-hydroxyclarithromycin (the active metabolite) by 80% and 104%, respectively, compared to water. Other pharmacokinetic parameters were not significantly altered. This interaction is unlikely to be of clinical significance.

References

  1. Cheng KL, Nafziger AN, Peloquin CA, Amsden GW "Effect of grapefruit juice on clarithromycin pharmacokinetics." Antimicrob Agents Chemother 42 (1998): 927-9

Switch to consumer interaction data

Minor

ethinyl estradiol food

Applies to: Tri-Lo-Marzia (ethinyl estradiol / norgestimate)

Coadministration with grapefruit juice may increase the bioavailability of oral estrogens. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. In a small, randomized, crossover study, the administration of ethinyl estradiol with grapefruit juice (compared to herbal tea) increased peak plasma drug concentration (Cmax) by 37% and area under the concentration-time curve (AUC) by 28%. Based on these findings, grapefruit juice is unlikely to affect the overall safety profile of ethinyl estradiol. However, as with other drug interactions involving grapefruit juice, the pharmacokinetic alterations are subject to a high degree of interpatient variability. Also, the effect on other estrogens has not been studied.

References

  1. Weber A, Jager R, Borner A, et al. "Can grapefruit juice influence ethinyl estradiol bioavailability?" Contraception 53 (1996): 41-7
  2. Schubert W, Eriksson U, Edgar B, Cullberg G, Hedner T "Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17B-estradiol." Eur J Drug Metab Pharmacokinet 20 (1995): 219-24

Switch to consumer interaction data

Minor

ethinyl estradiol food

Applies to: Tri-Lo-Marzia (ethinyl estradiol / norgestimate)

The central nervous system effects and blood levels of ethanol may be increased in patients taking oral contraceptives, although data are lacking and reports are contradictory. The mechanism may be due to enzyme inhibition. Consider counseling women about this interaction which is unpredictable.

References

  1. Hobbes J, Boutagy J, Shenfield GM "Interactions between ethanol and oral contraceptive steroids." Clin Pharmacol Ther 38 (1985): 371-80

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.