Drug Interactions between ofloxacin and Tamosin
This report displays the potential drug interactions for the following 2 drugs:
- ofloxacin
- Tamosin (tamoxifen)
Interactions between your drugs
ofloxacin tamoxifen
Applies to: ofloxacin and Tamosin (tamoxifen)
MONITOR: Certain quinolones, including levofloxacin, norfloxacin, and ofloxacin, may cause dose-related prolongation of the QT interval in some patients. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. During postmarketing surveillance, rare cases of torsade de pointes and ventricular tachycardia have been reported in patients taking levofloxacin, norfloxacin, and ofloxacin. The levofloxacin cases primarily involved patients with underlying medical conditions or taking concomitant medications that may have been contributory. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).
MANAGEMENT: Although the risk of a serious interaction is probably low, caution is recommended if levofloxacin, norfloxacin, or ofloxacin is used in combination with other drugs that can prolong the QT interval. Since the magnitude of QTc prolongation increases with increasing plasma concentrations of the quinolone, recommended dosages and intravenous infusion rates should not be exceeded. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.
References (23)
- (2001) "Product Information. Floxin (ofloxacin)." Ortho McNeil Pharmaceutical
- Thomas M, Maconochie JG, Fletcher E (1996) "The dilemma of the prolonged QT interval in early drug studies." Br J Clin Pharmacol, 41, p. 77-81
- (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
- Samaha FF (1999) "QTC interval prolongation and polymorphic ventricular tachycardia in association with levofloxacin." Am J Med, 107, p. 528-9
- Iannini PB, Doddamani S, Byazrova E, Curciumaru I, Kramer H (2001) "Risk of torsades de pointes with non-cardiac drugs. Prolongation of QT interval is probably a class effect of fluoroquinolones." Br Med J, 322, p. 46-7
- Owens RC (2001) "Risk assessment for antimicrobial agent-induced QTc interval prolongation and torsades de pointes." Pharmacotherapy, 21, p. 301-19
- Ball P (2000) "Quinolone-induced QT interval prolongation: a not-so-unexpected class effect." J Antimicrob Chemother, 45, p. 557-9
- Kang J, Wang L, Chen XL, Triggle DJ, Rampe D (2001) "Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG." Mol Pharmacol, 59, p. 122-6
- Kahn JB (2001) "Latest industry information on the safety profile of levofloxacin in the US." Chemotherapy, 47 Suppl 3, p. 32-7
- Frothingham R (2001) "Rates of torsades de pointes associated with ciprofloxacin, ofloxacin, levofloxacin, gatifloxacin, and moxifloxacin." Pharmacotherapy, 21, p. 1468-72
- Oliphant CM, Green GM (2002) "Quinolones: a comprehensive review." Am Fam Physician, 65, p. 455-64
- Owens RC Jr, Ambrose PG (2002) "Torsades de pointes associated with fluoroquinolones." Pharmacotherapy, 22, 663-8; discussion 668-72
- Noel GJ, Natarajan J, Chien S, Hunt TL, Goodman DB, Abels R (2003) "Effects of three fluoroquinolones on QT interval in healthy adults after single doses." Clin Pharmacol Ther, 73, p. 292-303
- Iannini PB (2002) "Cardiotoxicity of macrolides, ketolides and fluoroquinolones that prolong the QTc interval." Expert Opin Drug Saf, 1, p. 121-8
- Owens RC (2004) "QT Prolongation with Antimicrobial Agents : Understanding the Significance." Drugs, 64, p. 1091-124
- Nykamp DL, Blackmon CL, Schmidt PE, Roberson AG (2005) "QTc prolongation associated with combination therapy of levofloxacin, imipramine, and fluoxetine." Ann Pharmacother, 39, p. 543-6
- Katritsis D, Camm AJ (2003) "Quinolones: cardioprotective or cardiotoxic." Pacing Clin Electrophysiol, 26, p. 2317-20
- Stahlmann R (2002) "Clinical toxicological aspects of fluoroquinolones." Toxicol Lett, 127, p. 269-77
- Makaryus AN, Byrns K, Makaryus MN, Natarajan U, Singer C, Goldner B (2006) "Effect of ciprofloxacin and levofloxacin on the QT interval: is this a significant "clinical" event?" South Med J, 99, p. 52-6
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
- Falagas ME, Rafailidis PI, Rosmarakis ES (2007) "Arrhythmias associated with fluoroquinolone therapy." Int J Antimicrob Agents, 29, p. 374-9
- Cerner Multum, Inc. "Australian Product Information."
Drug and food/lifestyle interactions
tamoxifen food/lifestyle
Applies to: Tamosin (tamoxifen)
GENERALLY AVOID: Due to their estrogenic effect, isoflavones present in soy such as genistein and daidzein may stimulate breast tumor growth and antagonize the antiproliferative action of tamoxifen. Supportive data are derived primarily from in vitro and animal studies. In vitro, low concentrations of these phytoestrogens have been found to promote DNA synthesis and reverse the inhibitory effect of tamoxifen on estrogen-dependent breast cancer cell proliferation. In contrast, high concentrations of genistein greater than 10 microM/L have been found to enhance tamoxifen effects by inhibiting breast cancer cell growth. It is not known if these high concentrations are normally achieved in humans. Plasma concentrations below 4 microM/L have been observed in healthy volunteers given a soy diet for one month or large single doses of genistein. These concentrations are comparable to the low plasma concentrations associated with tumor stimulation reported in animals. In a study of 155 female breast cancer survivors with substantially bothersome hot flashes, a product containing 50 mg of soy isoflavones (40% to 45% genistein; 40% to 45% daidzein; 10% to 20% glycitein) taken three times a day was found to be no more effective than placebo in reducing hot flashes. No toxicity or recurrence of breast cancer was reported during the 9-week study period.
Green tea does not appear to have significant effects on the pharmacokinetics of tamoxifen or its primary active metabolite, endoxifen. In a study consisting of 14 patients who have been receiving tamoxifen treatment at a stable dose of 20 mg (n=13) or 40 mg (n=1) once daily for at least 3 months, coadministration with green tea supplements twice daily for 14 days resulted in no significant differences in the pharmacokinetics of either tamoxifen or endoxifen with respect to peak plasma concentration (Cmax), systemic exposure (AUC), and trough plasma concentration (Cmin) compared to administration of tamoxifen alone. The combination was well tolerated, with all reported adverse events categorized as mild (grade 1) and none categorized as serious or severe (grade 3 or higher) during the entire study. Although some adverse events such as headache, polyuria, gastrointestinal side effects (e.g., constipation, dyspepsia), and minor liver biochemical disturbances were reported more often during concomitant treatment with green tea, most can be attributed to the high dose of green tea used or to the caffeine in green tea. The green tea supplements used were 1000 mg in strength and contained 150 mg of epigallocatechin-3-gallate (EGCG), the most abundant and biologically active catechin in green tea. According to the investigators, the total daily dose of EGCG taken by study participants is equivalent to the amount contained in approximately 5 to 6 cups of regular green tea. However, it is not known to what extent the data from this study may be applicable to other preparations of green tea such as infusions, since the bioavailability of EGCG and other catechins may vary between preparations.
MANAGEMENT: Until more information is available, patients treated with tamoxifen may consider avoiding or limiting the consumption of soy-containing products. Consumption of green tea and green tea extracts during tamoxifen therapy appears to be safe.
References (2)
- Therapeutic Research Faculty (2008) Natural Medicines Comprehensive Database. http://www.naturaldatabase.com
- Braal CL, Hussaarts KGAM, Seuren L, et al. (2020) "Influence of green tea consumption on endoxifen steady-state concentration in breast cancer patients treated with tamoxifen." Breast Cancer Res Treat, 184, p. 107-13
ofloxacin food/lifestyle
Applies to: ofloxacin
GENERALLY AVOID: The oral bioavailability of quinolone and tetracycline antibiotics may be reduced by concurrent administration of preparations containing polyvalent cations such as aluminum, calcium, iron, magnesium, and zinc. Therapeutic failure may result. The proposed mechanism is chelation of quinolone and tetracycline antibiotics by di- and trivalent cations, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. Reduced gastrointestinal absorption of the cations should also be considered.
MANAGEMENT: Concomitant administration of oral quinolone and tetracycline antibiotics with preparations containing aluminum, calcium, iron, magnesium, and/or zinc salts should generally be avoided. Otherwise, the times of administration should be staggered by as much as possible to minimize the potential for interaction. Quinolones should typically be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation preparations, depending on the quinolone and formulation. Likewise, tetracyclines and polyvalent cation preparations should typically be administered 2 to 4 hours apart. The prescribing information for the antibiotic should be consulted for more specific dosing recommendations.
References (51)
- Polk RE, Helay DP, Sahai J, Drwal L, Racht E (1989) "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother, 33, p. 1841-4
- Nix DE, Watson WA, Lener ME, et al. (1989) "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther, 46, p. 700-5
- Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC (1990) "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother, 34, p. 931-3
- Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT (1992) "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother, 36, p. 830-2
- Yuk JH (1989) "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc, 262, p. 901
- Neuvonen PJ (1976) "Interactions with the absorption of tetracyclines." Drugs, 11, p. 45-54
- Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P (1989) "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother, 33, p. 1901-7
- Nguyen VX, Nix DE, Gillikin S, Schentag JJ (1989) "Effect of oral antacid administration on the pharmacokinetics of intravenous doxycycline." Antimicrob Agents Chemother, 33, p. 434-6
- Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW (1992) "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol, 33, p. 115-6
- Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ (1989) "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother, 33, p. 99-102
- Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A (1990) "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother, 34, p. 432-5
- Akerele JO, Okhamafe AO (1991) "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother, 28, p. 87-94
- Gothoni G, Neuvonen PJ, Mattila M, Hackman R (1972) "Iron-tetracycline interaction: effect of time interval between the drugs." Acta Med Scand, 191, p. 409-11
- Garty M, Hurwitz A (1980) "Effect of cimetidine and antacids on gastrointestinal absorption of tetracycline." Clin Pharmacol Ther, 28, p. 203-7
- Gotz VP, Ryerson GG (1986) "Evaluation of tetracycline on theophylline disposition in patients with chronic obstructive airways disease." Drug Intell Clin Pharm, 20, p. 694-6
- McCormack JP, Reid SE, Lawson LM (1990) "Theophylline toxicity induced by tetracycline." Clin Pharm, 9, p. 546-9
- D'Arcy PF, McElnay JC (1987) "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm, 21, p. 607-17
- Wadworth AN, Goa KL (1991) "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs, 42, p. 1018-60
- Shimada J, Shiba K, Oguma T, et al. (1992) "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother, 36, p. 1219-24
- Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
- Venho VM, Salonen RO, Mattila MJ (1978) "Modification of the pharmacokinetics of doxycycline in man by ferrous sulphate or charcoal." Eur J Clin Pharmacol, 14, p. 277-80
- (2002) "Product Information. Minocin (minocycline)." Lederle Laboratories
- Sahai J, Healy DP, Stotka J, Polk RE (1993) "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol, 35, p. 302-4
- (2001) "Product Information. Declomycin (demeclocycline)." Lederle Laboratories
- Lehto P, Kivisto KT (1994) "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother, 38, p. 248-51
- Noyes M, Polk RE (1988) "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med, 109, p. 168-9
- Grasela TH Jr, Schentag JJ, Sedman AJ, et al. (1989) "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother, 33, p. 615-7
- Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
- Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
- Lehto P, Kivisto KT (1994) "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther, 56, p. 477-82
- Bateman FJ (1970) "Effects of tetracyclines." Br Med J, 4, p. 802
- Neuvonen PJ, Gothoni G, Hackman R, Bjorksten K (1970) "Interference of iron with the absorption of tetracyclines in man." Br Med J, 4, p. 532-4
- Greenberger NJ (1971) "Absorption of tetracyclines: interference by iron." Ann Intern Med, 74, p. 792-3
- Neuvonen PJ, Penttila O (1974) "Effect of oral ferrous sulphate on the half-life of doxycycline in man." Eur J Clin Pharmacol, 7, p. 361-3
- Spivey JM, Cummings DM, Pierson NR (1996) "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy, 16, p. 314-6
- (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
- (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
- (2001) "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer
- (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
- Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother, 39 Suppl B, p. 93-7
- Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H (1997) "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother, 41, p. 1668-72
- Honig PK, Gillespie BK (1998) "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet, 35, p. 167-71
- Johnson RD, Dorr MB, Talbot GH, Caille G (1998) "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther, 20, p. 1149-58
- Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H (1999) "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother, 43, p. 1067-71
- Allen A, Vousden M, Porter A, Lewis A (1999) "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy, 45, p. 504-11
- Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S (2000) "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol, 49, p. 98-103
- (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
- (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
- (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
- (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
- (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.