Skip to main content

Drug Interactions between methotrexate and Saleto

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

methotrexate aspirin

Applies to: methotrexate and Saleto (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: Salicylates may interfere with the renal elimination of methotrexate and may displace it from binding sites. The pharmacologic effect and toxicity of methotrexate may be increased. Patients receiving high-dose methotrexate are at a greater risk of developing toxicity.

MANAGEMENT: If these agents must be used concomitantly, caution should be exercised and the patient should be monitored closely for signs and symptoms of bone marrow suppression and nephrotoxicity. Patients should be advised to report possible symptoms of toxicity including nausea, vomiting, diarrhea, stomatitis, sore throat, chills, fever, rash, unusual bruising or bleeding, jaundice, dark urine, swelling of the extremities, or shortness of breath to their physician. Patients should also be counseled to avoid any other over-the-counter salicylate products.

References

  1. Frenia ML, Long KS "Methotrexate and nonsteroidal antiinflamatory drug interactions." Ann Pharmacother 26 (1992): 234-7
  2. Skeith KJ, Russell AS, Jamali F, Coates J, Friedman H "Lack of significant interaction between low dose methotrexate and ibuprofen or flurbiprofen in patients with arthritis." J Rheumatol 17 (1990): 1008-10
  3. Maiche AG "Acute renal failure due to concomitant action of methotrexate and indomethacin." Lancet 1 (1986): 1390
  4. Singh RR, Malaviya AN, Pandey JN, Guleria JS "Fatal interaction between methotrexate and naproxen." Lancet 1 (1986): 1390
  5. Dupuis LL, Koren G, Shore A, Silverman ED, Laxer RM "Methotrexate-nonsteroidal antiinflammatory drug interaction in children with arthritis." J Rheumatol 17 (1990): 1469-73
  6. Stewart CF, Fleming RA, Germain BF, et al. "Aspirin alters methotrexate disposition in rheumatoid arthritis patients." Arthritis Rheum 34 (1991): 1514-20
  7. Stewart CF, Fleming RA, Arkin CR, Evans WE "Coadministration of naproxen and low-dose methotrexate in patients with rheumatoid arthritis." Clin Pharmacol Ther 47 (1990): 540-6
  8. Liegler DG, Henderson ES, Hahn MA, Oliverio VT "The effect of organic acids on renal clearance of methotrexate in man." Clin Pharmacol Ther 10 (1969): 849-57
  9. Ellison NM, Servi RJ "Acute renal failure and death following sequential intermediate-dose methotrexate and 5-FU: a possible adverse effect due to concomitant indomethacin administration." Cancer Treat Rep 69 (1985): 342-3
  10. Kraus A, Alarcon-Segovia D "Low dose MTX and NSAID induced "mild" renal insufficiency and severe neutropenia." J Rheumatol 18 (1991): 1274
  11. Dixon RL, Henderson ES, Rall DP "Plasma protein binding of methotrexate and its displacement by various drugs." Fed Proc 24 (1965): 454
  12. Baker H "Intermittent high dose oral methotrexate therapy in psoriasis." Br J Dermatol 82 (1970): 65-9
  13. Mandel MA "The synergistic effect of salicylates on methotrexate toxicity." Plast Reconstr Surg 57 (1976): 733-7
  14. Taylor JR, Halprin KM "Effect of sodium salicylate and indomethacin on methotrexate-serum albumin binding." Arch Dermatol 113 (1977): 588-91
  15. "Product Information. Methotrexate (methotrexate)." Lederle Laboratories PROD (2002):
  16. Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, Brater DC "The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis." Eur J Clin Pharmacol 42 (1992): 121-5
View all 16 references

Switch to consumer interaction data

Moderate

acetaminophen methotrexate

Applies to: Saleto (acetaminophen / aspirin / caffeine / salicylamide) and methotrexate

GENERALLY AVOID: Coadministration of methotrexate with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. Methotrexate, especially at higher dosages or during prolonged treatment, has been associated with severe hepatotoxicity including acute hepatitis, chronic fibrosis, cirrhosis, and fatal liver failure.

MANAGEMENT: The risk of hepatic injury should be considered when methotrexate is used with other potentially hepatotoxic agents (e.g., acetaminophen; alcohol; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; ketolide and macrolide antibiotics; kinase inhibitors; minocycline; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; sulfonamides; tamoxifen; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; lipid-lowering medications such as fenofibrate, lomitapide, mipomersen, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice). Baseline and periodic monitoring of hepatic function is recommended, while liver biopsy may be warranted during long-term use of methotrexate. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, pale stools, and jaundice.

References

  1. "Product Information. Methotrexate (methotrexate)." Lederle Laboratories PROD (2002):
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  3. "Product Information. Methotrexate (methotrexate)." Hospira Inc (2023):

Switch to consumer interaction data

Moderate

methotrexate caffeine

Applies to: methotrexate and Saleto (acetaminophen / aspirin / caffeine / salicylamide)

MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.

MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.

References

  1. Nesher G, Mates M, Zevin S "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum 48 (2003): 571-572

Switch to consumer interaction data

Moderate

aspirin salicylamide

Applies to: Saleto (acetaminophen / aspirin / caffeine / salicylamide) and Saleto (acetaminophen / aspirin / caffeine / salicylamide)

MONITOR: The combined use of low-dose or high-dose aspirin with other nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the potential for serious gastrointestinal (GI) toxicity, including inflammation, bleeding, ulceration, and perforation. Aspirin at anti-inflammatory dosages or higher may also decrease the plasma concentrations of many NSAIDs. The decreases have ranged from none or small (piroxicam, meloxicam, naproxen, tolmetin) to substantial (flurbiprofen, ibuprofen). However, the therapeutic response does not appear to be affected. Investigators theorize that aspirin may displace NSAIDs from plasma protein binding sites, resulting in increased concentration of unbound, or free, drug available for clearance. The increase in NSAID free fraction, and possibly some contributory anti-inflammatory effect from aspirin, may account for the lack of overall effect on therapeutic response.

MANAGEMENT: Caution is advised if aspirin, particularly at anti-inflammatory dosages, is used with other NSAIDs. Concomitant administration of NSAIDs is considered contraindicated or not recommended with aspirin at analgesic/anti-inflammatory dosages by many NSAID manufacturers. During concomitant therapy, patients should be advised to take the medications with food and to immediately report signs and symptoms of GI ulceration and bleeding such as abdominal pain, bloating, sudden dizziness or lightheadedness, nausea, vomiting, hematemesis, anorexia, and melena.

References

  1. Furst DE, Sarkissian E, Blocka K, et al. "Serum concentrations of salicylate and naproxen during concurrent therapy in patients with rheumatoid arthritis." Arthritis Rheum 30 (1987): 1157-61
  2. Abdel-Rahman MS, Reddi AS, Curro FA, Turkall RM, Kadry AM, Hansrote JA "Bioavailability of aspirin and salicylamide following oral co-administration in human volunteers." Can J Physiol Pharmacol 69 (1991): 1436-42
  3. Gruber CM "Clinical pharmacology of fenoprofen: a review." J Rheumatol 2 (1976): 8-17
  4. Cressman WA, Wortham GF, Plostnieks J "Absorption and excretion of tolemetin in man." Clin Pharmacol Ther 19 (1976): 224-33
  5. Kwan KC, Breault GO, Davis RL, et al. "Effects of concomitant aspirin administration on the pharmacokinetics of indomethacin in man." J Pharmacokinet Biopharm 6 (1978): 451-76
  6. Rubin A, Rodda BE, Warrick P, Gruber CM Jr, Ridolfo RS "Interactions of aspirin with nonsteroidal antiinflammatory drugs in man." Arthritis Rheum 16 (1973): 635-45
  7. Brooks PM, Walker JJ, Bell MA, Buchanan WW, Rhymer AR "Indomethacin--aspirin interaction: a clinical appraisal." Br Med J 3 (1975): 69-11
  8. Tempero KF, Cirillo VJ, Steelman SL "Diflunisal: a review of pharmacokinetic and pharmacodynamic properties, drug interactions, and special tolerability studies in humans." Br J Clin Pharmacol 4 (1977): s31-6
  9. Willis JV, Kendall MJ, Jack DB "A study of the effect of aspirin on the pharmacokinetics of oral and intravenous diclofenac sodium." Eur J Clin Pharmacol 18 (1980): 415-8
  10. Muller FO, Hundt HK, Muller DG "Pharmacokinetic and pharmacodynamic implications of long-term administration of non-steroidal anti-inflammatory agents." Int J Clin Pharmacol Biopharm 15 (1977): 397-402
  11. Hobbs DC, Twomey TM "Piroxicam pharmacokinetics in man: aspirin and antacid interaction studies." J Clin Pharmacol 19 (1979): 270-81
  12. Pawlotsky Y, Chales G, Grosbois B, Miane B, Bourel M "Comparative interaction of aspirin with indomethacin and sulindac in chronic rheumatic diseases." Eur J Rheumatol Inflamm 1 (1978): 18-20
  13. Segre EJ, Chaplin M, Forchielli E, Runkel R, Sevelius H "Naproxen-aspirin interactions in man." Clin Pharmacol Ther 15 (1973): 374-9
  14. Bird HA, Hill J, Leatham P, Wright V "A study to determine the clinical relevance of the pharmacokinetic interaction between aspirin and diclofenac." Agents Actions 18 (1986): 447-9
  15. Brooks PM, Khong T "Flurbiprofen-aspirin interaction: a double-blind crossover study." Curr Med Res Opin 5 (1977): 53-7
  16. Grennan DM, Ferry DG, Ashworth ME, Kenny RE, Mackinnnon M "The aspirin-ibuprofen interaction in rheumatoid arthritis." Br J Clin Pharmacol 8 (1979): 497-503
  17. Williams RL, Upton RA, Buskin JN, Jones RM "Ketoprofen-aspirin interactions." Clin Pharmacol Ther 30 (1981): 226-31
  18. Kaiser DG, Brooks CD, Lomen PL "Pharmacokinetics of flurbiprofen." Am J Med 80 (1986): 10-5
  19. Kahn SB, Hubsher JA "Effects of oxaprozin alone or in combination with aspirin on hemostasis and plasma protein binding." J Clin Pharmacol 23 (1983): 139-46
  20. "Product Information. Mobic (meloxicam)." Boehringer-Ingelheim PROD (2001):
  21. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  22. Cerner Multum, Inc. "Australian Product Information." O 0
View all 22 references

Switch to consumer interaction data

Minor

aspirin caffeine

Applies to: Saleto (acetaminophen / aspirin / caffeine / salicylamide) and Saleto (acetaminophen / aspirin / caffeine / salicylamide)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet 11 (1986): 71-6

Switch to consumer interaction data

Drug and food interactions

Major

acetaminophen food

Applies to: Saleto (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med 145 (1985): 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA 255 (1986): 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med 104 (1986): 399-404
  4. Thummel KE, Slattery JT, Nelson SD "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther 245 (1988): 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA 244 (1980): 251-3
  6. Kartsonis A, Reddy KR, Schiff ER "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med 105 (1986): 138-9
  7. Prescott LF, Critchley JA "Drug interactions affecting analgesic toxicity." Am J Med 75 (1983): 113-6
  8. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical PROD (2002):
  9. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  10. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  11. Nelson EB, Temple AR "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  12. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
View all 12 references

Switch to consumer interaction data

Moderate

methotrexate food

Applies to: methotrexate

MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.

MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.

References

  1. Nesher G, Mates M, Zevin S "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum 48 (2003): 571-572

Switch to consumer interaction data

Moderate

methotrexate food

Applies to: methotrexate

GENERALLY AVOID: Coadministration of methotrexate with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. Methotrexate, especially at higher dosages or during prolonged treatment, has been associated with severe hepatotoxicity including acute hepatitis, chronic fibrosis, cirrhosis, and fatal liver failure.

MANAGEMENT: The risk of hepatic injury should be considered when methotrexate is used with other potentially hepatotoxic agents (e.g., acetaminophen; alcohol; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; ketolide and macrolide antibiotics; kinase inhibitors; minocycline; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; sulfonamides; tamoxifen; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; lipid-lowering medications such as fenofibrate, lomitapide, mipomersen, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice). Baseline and periodic monitoring of hepatic function is recommended, while liver biopsy may be warranted during long-term use of methotrexate. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, pale stools, and jaundice.

References

  1. "Product Information. Methotrexate (methotrexate)." Lederle Laboratories PROD (2002):
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  3. "Product Information. Methotrexate (methotrexate)." Hospira Inc (2023):

Switch to consumer interaction data

Moderate

aspirin food

Applies to: Saleto (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn PROD (2002):

Switch to consumer interaction data

Moderate

salicylamide food

Applies to: Saleto (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn PROD (2002):

Switch to consumer interaction data

Moderate

methotrexate food

Applies to: methotrexate

MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.

MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.

References

  1. Nesher G, Mates M, Zevin S "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum 48 (2003): 571-572

Switch to consumer interaction data

Minor

caffeine food

Applies to: Saleto (acetaminophen / aspirin / caffeine / salicylamide)

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References

  1. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy 16 (1996): 1046-52

Switch to consumer interaction data

Minor

aspirin food

Applies to: Saleto (acetaminophen / aspirin / caffeine / salicylamide)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet 11 (1986): 71-6

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.