Skip to main content

Drug Interactions between linagliptin / metformin and Se-Donna PB HYOS

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

atropine hyoscyamine

Applies to: Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine) and Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine)

MONITOR: Agents with anticholinergic properties (e.g., sedating antihistamines; antispasmodics; neuroleptics; phenothiazines; skeletal muscle relaxants; tricyclic antidepressants; disopyramide) may have additive effects when used in combination. Excessive parasympatholytic effects may result in paralytic ileus, hyperthermia, heat stroke, and the anticholinergic intoxication syndrome. Peripheral symptoms of intoxication commonly include mydriasis, blurred vision, flushed face, fever, dry skin and mucous membranes, tachycardia, urinary retention, and constipation. Central symptoms may include memory loss, disorientation, incoherence, hallucinations, psychosis, delirium, hyperactivity, twitching or jerking movements, stereotypy, and seizures. Central nervous system-depressant effects may also be additively or synergistically increased when these agents are combined, especially in elderly or debilitated patients. Use of neuroleptics in combination with other neuroleptics or anticholinergic agents may increase the risk of tardive dyskinesia. In addition, some neuroleptics and tricyclic antidepressants may cause prolongation of the QT interval and theoretically, concurrent use of two or more drugs that can cause QT interval prolongation may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death.

MANAGEMENT: Caution is advised when agents with anticholinergic properties are combined, particularly in the elderly and those with underlying organic brain disease, who tend to be more sensitive to the central anticholinergic effects of these drugs and in whom toxicity symptoms may be easily overlooked. Patients should be advised to notify their physician promptly if they experience potential symptoms of anticholinergic intoxication such as abdominal pain, fever, heat intolerance, blurred vision, confusion, and/or hallucinations. Ambulatory patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them. A reduction in anticholinergic dosages may be necessary if excessive adverse effects develop.

References

  1. Stadnyk AN, Glezos JD "Drug-induced heat stroke." Can Med Assoc J 128 (1983): 957-9
  2. Zelman S, Guillan R "Heat stroke in phenothiazine-treated patients: a report of three fatalities." Am J Psychiatry 126 (1970): 1787-90
  3. Mann SC, Boger WP "Psychotropic drugs, summer heat and humidity, and hyperplexia: a danger restated." Am J Psychiatry 135 (1978): 1097-100
  4. Warnes H, Lehmann HE, Ban TA "Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases." Can Med Assoc J 96 (1967): 1112-3
  5. Gershon S, Neubauer H, Sundland DM "Interaction between some anticholinergic agents and phenothiazines." Clin Pharmacol Ther 6 (1965): 749-56
  6. Sarnquist F, Larson CP Jr "Drug-induced heat stroke." Anesthesiology 39 (1973): 348-50
  7. Johnson AL, Hollister LE, Berger PA "The anticholinergic intoxication syndrome: diagnosis and treatment." J Clin Psychiatry 42 (1981): 313-7
  8. Lee BS "Possibility of hyperpyrexia with antipsychotic and anticholinergic drugs." J Clin Psychiatry 47 (1986): 571
  9. Forester D "Fatal drug-induced heat stroke." JACEP 7 (1978): 243-4
  10. Moreau A, Jones BD, Banno V "Chronic central anticholinergic toxicity in manic depressive illness mimicking dementia." Can J Psychiatry 31 (1986): 339-41
  11. Hvizdos AJ, Bennett JA, Wells BG, Rappaport KB, Mendel SA "Anticholinergic psychosis in a patient receiving usual doses of haloperidol." Clin Pharm 2 (1983): 174-8
  12. Cohen MA, Alfonso CA, Mosquera M "Development of urinary retention during treatment with clozapine and meclizine [published erratum appears in Am J Psychiatry 1994 Jun;151(6):952]." Am J Psychiatry 151 (1994): 619-20
  13. "Product Information. Cogentin (benztropine)." Merck & Co., Inc PROD (2001):
  14. Kulik AV, Wilbur R "Delirium and stereotypy from anticholinergic antiparkinson drugs." Prog Neuropsychopharmacol Biol Psychiatry 6 (1982): 75-82
  15. "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories PROD (2001):
View all 15 references

Switch to consumer interaction data

Moderate

atropine scopolamine

Applies to: Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine) and Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine)

MONITOR: Agents with anticholinergic properties (e.g., sedating antihistamines; antispasmodics; neuroleptics; phenothiazines; skeletal muscle relaxants; tricyclic antidepressants; disopyramide) may have additive effects when used in combination. Excessive parasympatholytic effects may result in paralytic ileus, hyperthermia, heat stroke, and the anticholinergic intoxication syndrome. Peripheral symptoms of intoxication commonly include mydriasis, blurred vision, flushed face, fever, dry skin and mucous membranes, tachycardia, urinary retention, and constipation. Central symptoms may include memory loss, disorientation, incoherence, hallucinations, psychosis, delirium, hyperactivity, twitching or jerking movements, stereotypy, and seizures. Central nervous system-depressant effects may also be additively or synergistically increased when these agents are combined, especially in elderly or debilitated patients. Use of neuroleptics in combination with other neuroleptics or anticholinergic agents may increase the risk of tardive dyskinesia. In addition, some neuroleptics and tricyclic antidepressants may cause prolongation of the QT interval and theoretically, concurrent use of two or more drugs that can cause QT interval prolongation may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death.

MANAGEMENT: Caution is advised when agents with anticholinergic properties are combined, particularly in the elderly and those with underlying organic brain disease, who tend to be more sensitive to the central anticholinergic effects of these drugs and in whom toxicity symptoms may be easily overlooked. Patients should be advised to notify their physician promptly if they experience potential symptoms of anticholinergic intoxication such as abdominal pain, fever, heat intolerance, blurred vision, confusion, and/or hallucinations. Ambulatory patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them. A reduction in anticholinergic dosages may be necessary if excessive adverse effects develop.

References

  1. Stadnyk AN, Glezos JD "Drug-induced heat stroke." Can Med Assoc J 128 (1983): 957-9
  2. Zelman S, Guillan R "Heat stroke in phenothiazine-treated patients: a report of three fatalities." Am J Psychiatry 126 (1970): 1787-90
  3. Mann SC, Boger WP "Psychotropic drugs, summer heat and humidity, and hyperplexia: a danger restated." Am J Psychiatry 135 (1978): 1097-100
  4. Warnes H, Lehmann HE, Ban TA "Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases." Can Med Assoc J 96 (1967): 1112-3
  5. Gershon S, Neubauer H, Sundland DM "Interaction between some anticholinergic agents and phenothiazines." Clin Pharmacol Ther 6 (1965): 749-56
  6. Sarnquist F, Larson CP Jr "Drug-induced heat stroke." Anesthesiology 39 (1973): 348-50
  7. Johnson AL, Hollister LE, Berger PA "The anticholinergic intoxication syndrome: diagnosis and treatment." J Clin Psychiatry 42 (1981): 313-7
  8. Lee BS "Possibility of hyperpyrexia with antipsychotic and anticholinergic drugs." J Clin Psychiatry 47 (1986): 571
  9. Forester D "Fatal drug-induced heat stroke." JACEP 7 (1978): 243-4
  10. Moreau A, Jones BD, Banno V "Chronic central anticholinergic toxicity in manic depressive illness mimicking dementia." Can J Psychiatry 31 (1986): 339-41
  11. Hvizdos AJ, Bennett JA, Wells BG, Rappaport KB, Mendel SA "Anticholinergic psychosis in a patient receiving usual doses of haloperidol." Clin Pharm 2 (1983): 174-8
  12. Cohen MA, Alfonso CA, Mosquera M "Development of urinary retention during treatment with clozapine and meclizine [published erratum appears in Am J Psychiatry 1994 Jun;151(6):952]." Am J Psychiatry 151 (1994): 619-20
  13. "Product Information. Cogentin (benztropine)." Merck & Co., Inc PROD (2001):
  14. Kulik AV, Wilbur R "Delirium and stereotypy from anticholinergic antiparkinson drugs." Prog Neuropsychopharmacol Biol Psychiatry 6 (1982): 75-82
  15. "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories PROD (2001):
View all 15 references

Switch to consumer interaction data

Moderate

PHENobarbital scopolamine

Applies to: Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine) and Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine)

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol 14 (1982): 791-7
  2. Stambaugh JE, Lane C "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest 1 (1983): 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther 29 (1981): 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol 18 (1980): 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther 43 (1988): 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol 11 (1977): 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl) 73 (1981): 381-3
  8. Naylor GJ, McHarg A "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J 2 (1977): 22
  9. Stovner J, Endresen R "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand 24 (1965): 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol 36 (1984): 244-7
  11. Feldman SA, Crawley BE "Interaction of diazepam with the muscle-relaxant drugs." Br Med J 1 (1970): 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther 36 (1984): 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl) 96 (1988): 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I "Midazolam-morphine sedative interaction in patients." Anesth Analg 68 (1989): 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc PROD
  16. Greiff JMC, Rowbotham D "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet 27 (1994): 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand 80 Suppl (1989): 95-8
  18. Markowitz JS, Wells BG, Carson WH "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother 29 (1995): 603-9
  19. "Product Information. Ultram (tramadol)." McNeil Pharmaceutical PROD (2001):
  20. "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories PROD (2001):
  21. "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc) PROD (2001):
  22. "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals PROD (2001):
  23. "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company PROD (2001):
  24. "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals PROD (2001):
  25. Miller LG "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med 158 (1998): 2200-11
  26. "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical PROD (2001):
  27. "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals PROD (2001):
  28. Ferslew KE, Hagardorn AN, McCormick WF "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci 35 (1990): 477-82
  29. Plushner SL "Valerian: valeriana officinalis." Am J Health Syst Pharm 57 (2000): 328-35
  30. "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc (2002):
  31. "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals (2002):
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  33. Cerner Multum, Inc. "Australian Product Information." O 0
  34. "Product Information. Fycompa (perampanel)." Eisai Inc (2012):
  35. "Product Information. Belsomra (suvorexant)." Merck & Co., Inc (2014):
  36. "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc (2015):
View all 36 references

Switch to consumer interaction data

Moderate

hyoscyamine scopolamine

Applies to: Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine) and Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine)

MONITOR: Agents with anticholinergic properties (e.g., sedating antihistamines; antispasmodics; neuroleptics; phenothiazines; skeletal muscle relaxants; tricyclic antidepressants; disopyramide) may have additive effects when used in combination. Excessive parasympatholytic effects may result in paralytic ileus, hyperthermia, heat stroke, and the anticholinergic intoxication syndrome. Peripheral symptoms of intoxication commonly include mydriasis, blurred vision, flushed face, fever, dry skin and mucous membranes, tachycardia, urinary retention, and constipation. Central symptoms may include memory loss, disorientation, incoherence, hallucinations, psychosis, delirium, hyperactivity, twitching or jerking movements, stereotypy, and seizures. Central nervous system-depressant effects may also be additively or synergistically increased when these agents are combined, especially in elderly or debilitated patients. Use of neuroleptics in combination with other neuroleptics or anticholinergic agents may increase the risk of tardive dyskinesia. In addition, some neuroleptics and tricyclic antidepressants may cause prolongation of the QT interval and theoretically, concurrent use of two or more drugs that can cause QT interval prolongation may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death.

MANAGEMENT: Caution is advised when agents with anticholinergic properties are combined, particularly in the elderly and those with underlying organic brain disease, who tend to be more sensitive to the central anticholinergic effects of these drugs and in whom toxicity symptoms may be easily overlooked. Patients should be advised to notify their physician promptly if they experience potential symptoms of anticholinergic intoxication such as abdominal pain, fever, heat intolerance, blurred vision, confusion, and/or hallucinations. Ambulatory patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them. A reduction in anticholinergic dosages may be necessary if excessive adverse effects develop.

References

  1. Stadnyk AN, Glezos JD "Drug-induced heat stroke." Can Med Assoc J 128 (1983): 957-9
  2. Zelman S, Guillan R "Heat stroke in phenothiazine-treated patients: a report of three fatalities." Am J Psychiatry 126 (1970): 1787-90
  3. Mann SC, Boger WP "Psychotropic drugs, summer heat and humidity, and hyperplexia: a danger restated." Am J Psychiatry 135 (1978): 1097-100
  4. Warnes H, Lehmann HE, Ban TA "Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases." Can Med Assoc J 96 (1967): 1112-3
  5. Gershon S, Neubauer H, Sundland DM "Interaction between some anticholinergic agents and phenothiazines." Clin Pharmacol Ther 6 (1965): 749-56
  6. Sarnquist F, Larson CP Jr "Drug-induced heat stroke." Anesthesiology 39 (1973): 348-50
  7. Johnson AL, Hollister LE, Berger PA "The anticholinergic intoxication syndrome: diagnosis and treatment." J Clin Psychiatry 42 (1981): 313-7
  8. Lee BS "Possibility of hyperpyrexia with antipsychotic and anticholinergic drugs." J Clin Psychiatry 47 (1986): 571
  9. Forester D "Fatal drug-induced heat stroke." JACEP 7 (1978): 243-4
  10. Moreau A, Jones BD, Banno V "Chronic central anticholinergic toxicity in manic depressive illness mimicking dementia." Can J Psychiatry 31 (1986): 339-41
  11. Hvizdos AJ, Bennett JA, Wells BG, Rappaport KB, Mendel SA "Anticholinergic psychosis in a patient receiving usual doses of haloperidol." Clin Pharm 2 (1983): 174-8
  12. Cohen MA, Alfonso CA, Mosquera M "Development of urinary retention during treatment with clozapine and meclizine [published erratum appears in Am J Psychiatry 1994 Jun;151(6):952]." Am J Psychiatry 151 (1994): 619-20
  13. "Product Information. Cogentin (benztropine)." Merck & Co., Inc PROD (2001):
  14. Kulik AV, Wilbur R "Delirium and stereotypy from anticholinergic antiparkinson drugs." Prog Neuropsychopharmacol Biol Psychiatry 6 (1982): 75-82
  15. "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories PROD (2001):
View all 15 references

Switch to consumer interaction data

Moderate

PHENobarbital linagliptin

Applies to: Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine) and linagliptin / metformin

GENERALLY AVOID: Coadministration with potent inducers of the CYP450 3A4 isoenzyme and/or P-glycoprotein efflux transporter may significantly decrease the plasma concentrations of linagliptin, which is a substrate for both. The interaction may produce subtherapeutic and likely ineffective plasma concentrations of linagliptin. According to the product labeling, coadministration of linagliptin (5 mg orally once daily) with the potent CYP450 3A4/P-glycoprotein inducer rifampin (600 mg once daily) to steady state resulted in decreases to linagliptin peak plasma concentration (Cmax) by 44% and systemic exposure (AUC) by 40% compared to administration alone.

MANAGEMENT: Due to the potential for reduced efficacy of linagliptin, coadministration with potent CYP450 3A4 and/or P-glycoprotein inducers such as carbamazepine, dexamethasone, enzalutamide, phenobarbital, phenytoin, rifamycins, and St. John's wort should generally be avoided. For patients requiring use of such drugs, an alternative to linagliptin is strongly recommended. Other known inducers of CYP450 3A4 include aminoglutethimide, barbiturates, bexarotene, bosentan, dabrafenib, efavirenz, modafinil, nafcillin, nevirapine, and various other anticonvulsants, although the extent to which they interact with linagliptin is unknown. If concomitant use with these agents is necessary, glycemic control should be closely monitored.

References

  1. "Product Information. Tradjenta (linagliptin)." Boehringer Ingelheim (2011):

Switch to consumer interaction data

Drug and food interactions

Major

metFORMIN food

Applies to: linagliptin / metformin

GENERALLY AVOID: Alcohol can potentiate the effect of metformin on lactate metabolism and increase the risk of lactic acidosis. In addition, alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Although hypoglycemia rarely occurs during treatment with metformin alone, the risk may increase with acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes.

Food may have varying effects on the absorption of metformin from immediate-release versus extended-release formulations. When a single 850 mg dose of immediate-release metformin was administered with food, mean peak plasma concentration (Cmax) and systemic exposure (AUC) decreased by 40% and 25%, respectively, and time to peak plasma concentration (Tmax) increased by 35 minutes compared to administration under fasting conditions. By contrast, administration of extended-release metformin with food increased AUC by 50% without affecting Cmax or Tmax, and both high- and low-fat meals had the same effect. These data may not be applicable to formulations that contain metformin with other oral antidiabetic agents.

MANAGEMENT: Metformin should be taken with meals, and excessive alcohol intake should be avoided during treatment. Diabetes patients in general should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Alcohol should not be consumed on an empty stomach or following exercise, as it may increase the risk of hypoglycemia. Patients should contact their physician immediately if they experience potential signs and symptoms of lactic acidosis such as malaise, myalgia, respiratory distress, increasing somnolence, and nonspecific abdominal distress (especially after stabilization of metformin therapy, when gastrointestinal symptoms are uncommon). With more marked acidosis, there may also be associated hypothermia, hypotension, and resistant bradyarrhythmias. Metformin should be withdrawn promptly if lactic acidosis is suspected. Serum electrolytes, ketones, blood glucose, blood pH, lactate levels, and blood metformin levels may be useful in establishing a diagnosis. Lactic acidosis should be suspected in any diabetic patient with metabolic acidosis lacking evidence of ketoacidosis (ketonuria and ketonemia).

References

  1. "Product Information. Glucophage (metformin)." Bristol-Myers Squibb PROD (2001):
  2. "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care 25(Suppl 1) (2002): S50-S60

Switch to consumer interaction data

Major

PHENobarbital food

Applies to: Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine)

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References

  1. Gupta RC, Kofoed J "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J 94 (1966): 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med 51 (1971): 346-51
  3. Saario I, Linnoila M "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh) 38 (1976): 382-92
  4. Stead AH, Moffat AC "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol 2 (1983): 5-14
  5. Seixas FA "Drug/alcohol interactions: avert potential dangers." Geriatrics 34 (1979): 89-102
View all 5 references

Switch to consumer interaction data

Moderate

linagliptin food

Applies to: linagliptin / metformin

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References

  1. Jerntorp P, Almer LO "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand 656 (1981): 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol 24 (1983): 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia 24 (1983): 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A "Interaction of ethanol and glipizide in humans." Diabetes Care 10 (1987): 683-6
  5. "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  6. "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM "The pharmacology of sulfonylureas." Am J Med 70 (1981): 361-72
  9. "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care 25(Suppl 1) (2002): S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
View all 10 references

Switch to consumer interaction data

Moderate

atropine food

Applies to: Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine)

GENERALLY AVOID: Use of anticholinergic agents with alcohol may result in sufficient impairment of attention so as to render driving and operating machinery more hazardous. In addition, the potential for abuse may be increased with the combination. The mechanism of interaction is not established but may involve additive depressant effects on the central nervous system. No effect of oral propantheline or atropine on blood alcohol levels was observed in healthy volunteers when administered before ingestion of a standard ethanol load. However, one study found impairment of attention in subjects given atropine 0.5 mg or glycopyrrolate 1 mg in combination with alcohol.

MANAGEMENT: Alcohol should generally be avoided during therapy with anticholinergic agents. Patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them.

References

  1. Linnoila M "Drug effects on psychomotor skills related to driving: interaction of atropine, glycopyrrhonium and alcohol." Eur J Clin Pharmacol 6 (1973): 107-12

Switch to consumer interaction data

Moderate

hyoscyamine food

Applies to: Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine)

GENERALLY AVOID: Use of anticholinergic agents with alcohol may result in sufficient impairment of attention so as to render driving and operating machinery more hazardous. In addition, the potential for abuse may be increased with the combination. The mechanism of interaction is not established but may involve additive depressant effects on the central nervous system. No effect of oral propantheline or atropine on blood alcohol levels was observed in healthy volunteers when administered before ingestion of a standard ethanol load. However, one study found impairment of attention in subjects given atropine 0.5 mg or glycopyrrolate 1 mg in combination with alcohol.

MANAGEMENT: Alcohol should generally be avoided during therapy with anticholinergic agents. Patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them.

References

  1. Linnoila M "Drug effects on psychomotor skills related to driving: interaction of atropine, glycopyrrhonium and alcohol." Eur J Clin Pharmacol 6 (1973): 107-12

Switch to consumer interaction data

Moderate

scopolamine food

Applies to: Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine)

GENERALLY AVOID: Use of anticholinergic agents with alcohol may result in sufficient impairment of attention so as to render driving and operating machinery more hazardous. In addition, the potential for abuse may be increased with the combination. The mechanism of interaction is not established but may involve additive depressant effects on the central nervous system. No effect of oral propantheline or atropine on blood alcohol levels was observed in healthy volunteers when administered before ingestion of a standard ethanol load. However, one study found impairment of attention in subjects given atropine 0.5 mg or glycopyrrolate 1 mg in combination with alcohol.

MANAGEMENT: Alcohol should generally be avoided during therapy with anticholinergic agents. Patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them.

References

  1. Linnoila M "Drug effects on psychomotor skills related to driving: interaction of atropine, glycopyrrhonium and alcohol." Eur J Clin Pharmacol 6 (1973): 107-12

Switch to consumer interaction data

Minor

scopolamine food

Applies to: Se-Donna PB HYOS (atropine / hyoscyamine / phenobarbital / scopolamine)

The coadministration with grapefruit juice may delay the absorption and increase the bioavailability of oral scopolamine. The proposed mechanism is delay of gastric emptying as well as inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. In an open-label, crossover study consisting of 14 subjects, the consumption of grapefruit juice (compared to water) was associated with a 30% increase in mean systemic bioavailability and a 153% increase in time to reach peak serum concentration (Tmax) of scopolamine. However, the perceived pharmacodynamic effect of the drug, as measured by % change in subjective alertness compared to baseline, was similar after coadministration with water and grapefruit juice. Based on these findings, grapefruit juice is unlikely to affect the overall safety profile of of scopolamine but may delay its onset of action following oral administration. However, as with other drug interactions involving grapefruit juice, the pharmacokinetic alterations are subject to a high degree of interpatient variability.

References

  1. Ebert U, Oertel R, Kirch W "Influence of grapefruit juice on scopolamine pharmacokinetics and pharmacodynamics in healthy male and female subjects." Int J Clin Pharm Therapeutics 38 (2000): 523-31

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.