Drug Interactions between levothyroxine and Nuedexta
This report displays the potential drug interactions for the following 2 drugs:
- levothyroxine
- Nuedexta (dextromethorphan/quinidine)
Interactions between your drugs
quiNIDine dextromethorphan
Applies to: Nuedexta (dextromethorphan / quinidine) and Nuedexta (dextromethorphan / quinidine)
GENERALLY AVOID: Coadministration with potent CYP450 2D6 inhibitors (e.g., quinidine, terbinafine) may significantly increase the plasma concentrations of dextromethorphan in patients who are extensive metabolizers of this isoenzyme (approximately 93% of Caucasians and more than 98% of Asians and individuals of African descent). The proposed mechanism is inhibition of the CYP450 2D6-mediated O-demethylation of dextromethorphan. Studies in humans have shown an increase in systemic exposure of dextromethorphan of up to 43-fold when given concurrently with quinidine. Increased plasma concentrations increase the risk of dextromethorphan-related adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome. However, this interaction has also been used clinically, with dextromethorphan in combination with quinidine indicated by some authorities for the treatment of pseudobulbar affect. Data evaluating the impact of this interaction in patients who are poor metabolizers of CYP450 2D6 are limited; most studies include extensive metabolizers of this isoenzyme. It is expected that poor metabolizers would have elevated dextromethorphan levels without concurrent quinidine
MANAGEMENT: The combination of dextromethorphan with potent CYP450 2D6 inhibitors should be generally avoided. Some manufacturers consider the concomitant use of dextromethorphan and selective serotonin reuptake inhibitors contraindicated. If use is considered necessary, the patient should be monitored for signs of dextromethorphan adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome, and advised to notify their health care professional if these adverse effects develop or worsen. Dose reduction of dextromethorphan may also be required.
References (6)
- Zhang Y, Britto MR, Valderhaug KL, Wedlund PJ, Smith RA (1992) "Dextromethorphan: enhancing its systemic availability by way of low-dose quinidine-mediated inhibition of cytochrome P4502D6." Clin Pharmacol Ther, 51, p. 647-55
- Schadel M, Wu DA, Otton SV, Kalow W, Sellers EM (1995) "Pharmacokinetics of dextromethorphan and metabolites in humans: influence of the CYP2d6 phenotype and quinidine inhibition." J Clin Psychopharmacol, 15, p. 263-9
- Capon DA, Bochner F, Kerry N, Mikus G, Danz C, Somogyi AA (1996) "The influence of CYP2d6 polymorphism and quinidine on the disposition and antitussive effect of dextromethorphan in humans." Clin Pharmacol Ther, 60, p. 295-307
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2010) "Product Information. Nuedexta (dextromethorphan-quinidine)." Avanir Pharmaceuticals, Inc
Drug and food interactions
quiNIDine food
Applies to: Nuedexta (dextromethorphan / quinidine)
GENERALLY AVOID: In a small, randomized, crossover study, the administration of quinidine with grapefruit juice (compared to water) to healthy volunteers significantly prolonged the time to reach peak plasma quinidine concentrations and decreased the plasma concentrations of its major metabolite, 3-hydroxyquinidine. These changes were associated pharmacodynamically with both a delay and a reduction in the maximal effect on QTc interval. The proposed mechanism is delay of gastric emptying as well as inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits.
MANAGEMENT: Given the drug's narrow therapeutic index, patients receiving quinidine therapy should avoid the consumption of grapefruits and grapefruit juice to prevent any undue fluctuations in plasma drug levels.
References (4)
- Ace LN, Jaffe JM, Kunka RL (1983) "Effect of food and an antacid on quinidine bioavailability." Biopharm Drug Dispos, 4, p. 183-90
- Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
- Ha HR, Chen J, Leuenberger PM, Freiburghaus AU, Follah F (1995) "In vitro inhibition of midazolam and quinidine metabolism by flavonoids." Eur J Clin Pharmacol, 48, p. 367-71
- Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
dextromethorphan food
Applies to: Nuedexta (dextromethorphan / quinidine)
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.
MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (4)
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
levothyroxine food
Applies to: levothyroxine
ADJUST DOSING INTERVAL: Consumption of certain foods as well as the timing of meals relative to dosing may affect the oral absorption of T4 thyroid hormone (i.e., levothyroxine). T4 oral absorption is increased by fasting and decreased by foods such as soybean flour (e.g., infant formula), cotton seed meal, walnuts, dietary fiber, calcium, and calcium fortified juices. Grapefruit or grapefruit products may delay the absorption of T4 thyroid hormone and reduce its bioavailability. The mechanism of this interaction is not fully understood.
MANAGEMENT: Some manufacturers recommend administering oral T4 as a single daily dose, on an empty stomach, one-half to one hour before breakfast. In general, oral preparations containing T4 thyroid hormone should be administered on a consistent schedule with regard to time of day and relation to meals to avoid large fluctuations in serum levels. Foods that may affect T4 absorption should be avoided within several hours of dosing if possible. Consult local guidelines for the administration of T4 in patients receiving enteral feeding.
References (3)
- (2002) "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical
- (2022) "Product Information. Armour Thyroid (thyroid desiccated)." Forest Pharmaceuticals
- Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67
levothyroxine food
Applies to: levothyroxine
ADJUST DOSING INTERVAL: Concurrent administration of calcium-containing products may decrease the oral bioavailability of levothyroxine by one-third in some patients. Pharmacologic effects of levothyroxine may be reduced. The exact mechanism of interaction is unknown but may involve nonspecific adsorption of levothyroxine to calcium at acidic pH levels, resulting in an insoluble complex that is poorly absorbed from the gastrointestinal tract. In one study, 20 patients with hypothyroidism who were taking a stable long-term regimen of levothyroxine demonstrated modest but significant decreases in mean free and total thyroxine (T4) levels as well as a corresponding increase in mean thyrotropin (thyroid-stimulating hormone, or TSH) level following the addition of calcium carbonate (1200 mg/day of elemental calcium) for 3 months. Four patients had serum TSH levels that were higher than the normal range. Both T4 and TSH levels returned to near-baseline 2 months after discontinuation of calcium, which further supported the likelihood of an interaction. In addition, there have been case reports suggesting decreased efficacy of levothyroxine during calcium coadministration. It is not known whether this interaction occurs with other thyroid hormone preparations.
MANAGEMENT: Some experts recommend separating the times of administration of levothyroxine and calcium-containing preparations by at least 4 hours. Monitoring of serum TSH levels is recommended. Patients with gastrointestinal or malabsorption disorders may be at a greater risk of developing clinical or subclinical hypothyroidism due to this interaction.
References (4)
- Schneyer CR (1998) "Calcium carbonate and reduction of levothyroxine efficacy." JAMA, 279, p. 750
- Singh N, Singh PN, Hershman JM (2000) "Effect of calcium carbonate on the absorption of levothyroxine." JAMA, 283, p. 2822-5
- Csako G, McGriff NJ, Rotman-Pikielny P, Sarlis NJ, Pucino F (2001) "Exaggerated levothyroxine malabsorption due to calcium carbonate supplementation in gastrointestinal disorders." Ann Pharmacother, 35, p. 1578-83
- Neafsey PJ (2004) "Levothyroxine and calcium interaction: timing is everything." Home Healthc Nurse, 22, p. 338-9
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.