Skip to main content

Drug Interactions between letrozole / ribociclib and seladelpar

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

letrozole ribociclib

Applies to: letrozole / ribociclib and letrozole / ribociclib

MONITOR: Coadministration with ribociclib may increase the plasma concentrations and pharmacologic effects of drugs that are substrates of CYP450 3A4. The proposed mechanism is decreased clearance due to ribociclib-mediated inhibition of CYP450 3A4 metabolism. In healthy study subjects, administration of midazolam, a sensitive CYP450 3A4 substrate, with multiple 400 mg daily doses of ribociclib increased the midazolam peak plasma concentration (Cmax) and systemic exposure (AUC) by 2.1-fold and 3.8-fold, respectively, compared to midazolam administered alone. When given at a clinically relevant dose of 600 mg daily, ribociclib is predicted to increase midazolam Cmax and AUC by 2.4-fold and 5.2-fold, respectively.

MANAGEMENT: Caution is advised when ribociclib is used concomitantly with drugs that undergo metabolism by CYP450 3A4, particularly those with a narrow therapeutic range. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever ribociclib is added to or withdrawn from therapy.

References (9)
  1. Zhou XJ, Zhou-Pan XR, Gauthier T, Placidi M, Maurel P, Rahmani R (1993) "Human liver microsomal cytochrome P450 3A isozymes mediated vindesine biotransformation. Metabolic drug interactions." Biochem Pharmacol, 45, p. 853-61
  2. Trivier JM, Libersa C, Belloc C, Lhermitte M (1993) "Amiodarone N-deethylation in human liver microsomes: involvement of cytochrome P450 3A enzymes (first report)." Life Sci, 52, pl91-6
  3. Rawden HC, Kokwaro GO, Ward SA, Edwards G (2000) "Relative contribution of cytochromes P-450 and flavin-containing monoxygenases to the metabolism of albendazole by human liver microsomes." Br J Clin Pharmacol, 49, p. 313-22
  4. DSouza DL, Levasseur LM, Nezamis J, Robbins DK, Simms L, Koch KM (2001) "Effect of alosetron on the pharmacokinetics of alprazolam." J Clin Pharmacol, 41, p. 452-4
  5. Katoh M, Nakajima M, Yamazaki H, Yokoi T (2001) "Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport." Eur J Pharm Sci, 12, p. 505-13
  6. Kane GC, Lipsky JJ (2000) "Drug-grapefruit juice interactions." Mayo Clin Proc, 75, p. 933-42
  7. Yu DK (1999) "The contribution of P-glycoprotein to pharmacokinetic drug-drug interactions." J Clin Pharmacol, 39, p. 1203-11
  8. Nagy J, Schipper HG, Koopmans RP, Butter JJ, van Boxtel CJ, Kager PA (2002) "Effect of grapefruit juice or cimetidine coadministration on albendazole bioavailability." Am J Trop Med Hyg, 66, p. 260-3
  9. (2017) "Product Information. Kisqali (ribociclib)." Novartis Pharmaceuticals
Moderate

ribociclib seladelpar

Applies to: letrozole / ribociclib and seladelpar

MONITOR: Concomitant use with a moderate to potent CYP450 3A4 inhibitor may significantly increase seladelpar's exposure in patients who are CYP450 2C9 poor metabolizers. The proposed mechanism is reduced clearance of seladelpar, which is primarily metabolized via CYP450 2C9 and to a lesser extent via CYP450 3A4 and 2C8. The activity of CYP450 2C9 is decreased in individuals with genetic variants of the isoenzyme. After a single dose of seladelpar (1 mg to 15 mg), dose-normalized systemic exposure (AUC) was 48% higher in CYP450 2C9 poor metabolizers (n=2) and 24% higher in CYP450 2C9 intermediate metabolizers (n=28) compared to normal metabolizers (n=84). However, the maximum plasma concentration (Cmax) was similar regardless of metabolizer status. These increases in AUC are not considered clinically relevant alone. Similarly, physiologically based pharmacokinetic model simulations predicted that coadministration with the potent CYP450 3A4 inhibitor itraconazole (300 mg daily) and the moderate CYP450 3A4 inhibitor erythromycin (500 mg 4 times daily) increased seladelpar's AUC by 34% and 24% and its Cmax by 18% and 14%, respectively. These changes were also not considered clinically relevant alone. However, use of a concomitant moderate to potent CYP450 3A4 inhibitor in a patient classified as a CYP450 2C9 poor metabolizer may result in clinically significant changes. While in vivo data specific to this scenario are lacking, coadministration with the moderate CYP450 2C9 and 3A4 inhibitor fluconazole (400 mg) increased the AUC of seladelpar (10 mg) by 2.4-fold, which was considered clinically significant.

MANAGEMENT: If concomitant use of a moderate to potent CYP450 3A4 inhibitor is clinically necessary during treatment with seladelpar, caution and determining the patient's CYP450 2C9 genotype may be advisable. Patients who are classified as poor CYP450 2C9 metabolizers should be monitored more closely for adverse reactions (e.g., abnormal liver function tests) during coadministration. Should adverse reactions occur, treatment with seladelpar may need to be held or permanently discontinued as indicated by the manufacturer. The labeling of the inhibitor should also be consulted as some inhibitors may continue to have effects on CYP450 3A4 even after the agent has been discontinued.

References (2)
  1. (2024) "Product Information. Livdelzi (seladelpar)." Gilead Sciences
  2. Cymabay Therapeutics Inc (2024) Center for drug evaluation and research. Application Number: 217899Orig1s000 integrated review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2024/217899Orig1s000IntegratedR.pdf

Drug and food interactions

Moderate

ribociclib food

Applies to: letrozole / ribociclib

GENERALLY AVOID: Pomegranates and grapefruit may increase the systemic exposure to ribociclib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in these fruits. Increased exposure to ribociclib may increase the risk of adverse effects such as infections, neutropenia, leukopenia, anemia, thrombocytopenia, anorexia, nausea, vomiting, diarrhea, stomatitis, alopecia, fatigue, headache, and abnormal liver function may be increased.

MANAGEMENT: Patients receiving ribociclib should avoid consumption of pomegranates or pomegranate juice and grapefruit or grapefruit juice during treatment.

References (1)
  1. (2017) "Product Information. Kisqali (ribociclib)." Novartis Pharmaceuticals

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.