Skip to main content

Drug Interactions between Kisqali Femara Co-Pack and saxagliptin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

letrozole ribociclib

Applies to: Kisqali Femara Co-Pack (letrozole / ribociclib) and Kisqali Femara Co-Pack (letrozole / ribociclib)

MONITOR: Coadministration with ribociclib may increase the plasma concentrations and pharmacologic effects of drugs that are substrates of CYP450 3A4. The proposed mechanism is decreased clearance due to ribociclib-mediated inhibition of CYP450 3A4 metabolism. In healthy study subjects, administration of midazolam, a sensitive CYP450 3A4 substrate, with multiple 400 mg daily doses of ribociclib increased the midazolam peak plasma concentration (Cmax) and systemic exposure (AUC) by 2.1-fold and 3.8-fold, respectively, compared to midazolam administered alone. When given at a clinically relevant dose of 600 mg daily, ribociclib is predicted to increase midazolam Cmax and AUC by 2.4-fold and 5.2-fold, respectively.

MANAGEMENT: Caution is advised when ribociclib is used concomitantly with drugs that undergo metabolism by CYP450 3A4, particularly those with a narrow therapeutic range. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever ribociclib is added to or withdrawn from therapy.

References (9)
  1. Zhou XJ, Zhou-Pan XR, Gauthier T, Placidi M, Maurel P, Rahmani R (1993) "Human liver microsomal cytochrome P450 3A isozymes mediated vindesine biotransformation. Metabolic drug interactions." Biochem Pharmacol, 45, p. 853-61
  2. Trivier JM, Libersa C, Belloc C, Lhermitte M (1993) "Amiodarone N-deethylation in human liver microsomes: involvement of cytochrome P450 3A enzymes (first report)." Life Sci, 52, pl91-6
  3. Rawden HC, Kokwaro GO, Ward SA, Edwards G (2000) "Relative contribution of cytochromes P-450 and flavin-containing monoxygenases to the metabolism of albendazole by human liver microsomes." Br J Clin Pharmacol, 49, p. 313-22
  4. DSouza DL, Levasseur LM, Nezamis J, Robbins DK, Simms L, Koch KM (2001) "Effect of alosetron on the pharmacokinetics of alprazolam." J Clin Pharmacol, 41, p. 452-4
  5. Katoh M, Nakajima M, Yamazaki H, Yokoi T (2001) "Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport." Eur J Pharm Sci, 12, p. 505-13
  6. Kane GC, Lipsky JJ (2000) "Drug-grapefruit juice interactions." Mayo Clin Proc, 75, p. 933-42
  7. Yu DK (1999) "The contribution of P-glycoprotein to pharmacokinetic drug-drug interactions." J Clin Pharmacol, 39, p. 1203-11
  8. Nagy J, Schipper HG, Koopmans RP, Butter JJ, van Boxtel CJ, Kager PA (2002) "Effect of grapefruit juice or cimetidine coadministration on albendazole bioavailability." Am J Trop Med Hyg, 66, p. 260-3
  9. (2017) "Product Information. Kisqali (ribociclib)." Novartis Pharmaceuticals
Moderate

sAXagliptin ribociclib

Applies to: saxagliptin and Kisqali Femara Co-Pack (letrozole / ribociclib)

MONITOR: Coadministration with inhibitors of CYP450 3A4 may alter the plasma concentrations of saxagliptin and its pharmacologically active metabolite, both of which are substrates of the isoenzyme. In one study, administration of a single 100 mg dose of saxagliptin in combination with the potent CYP450 3A4 inhibitor ketoconazole (200 mg every 12 hours at steady state) resulted in increases to saxagliptin peak plasma concentration (Cmax) by 62% and systemic exposure (AUC) by 2.5-fold. These changes were accompanied by corresponding decreases in the Cmax and AUC of the active metabolite by 95% and 88%, respectively. The pharmacokinetics of ketoconazole were not significantly affected, with Cmax and AUC decreasing by just 16% and 13%, respectively. In another study, saxagliptin Cmax increased by 2.4-fold and AUC increased by 3.7-fold during coadministration of a single 20 mg dose of saxagliptin with ketoconazole (200 mg every 12 hours at steady state), while Cmax and AUC of the active metabolite decreased by 96% and 90%, respectively. When a single 10 mg dose of saxagliptin was coadministered with the moderate CYP450 3A4 inhibitor diltiazem (360 mg long-acting formulation at steady state), saxagliptin Cmax increased by 63% and AUC increased by 2.1-fold, while Cmax of the active metabolite decreased by 44% and AUC decreased by 36%. Coadministration of multiple once-daily doses of saxagliptin (10 mg) and diltiazem did not significantly affect the pharmacokinetics of diltiazem. However, some authorities suggest that these pharmacokinetic effects of ketoconazole and diltiazem on saxagliptin and/or its metabolite are not clinically meaningful.

MANAGEMENT: Pharmacologic response to saxagliptin should be monitored more closely whenever a CYP450 3A4 inhibitor is added to or withdrawn from therapy. Patients should be advised to regularly monitor their blood sugar and counseled on how to recognize and treat hypoglycemia, which may include symptoms such as headache, dizziness, drowsiness, nervousness, confusion, tremor, hunger, weakness, perspiration, and palpitations. The physician should be notified if an interaction is suspected.

References (2)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. (2009) "Product Information. Onglyza (saxagliptin)." Bristol-Myers Squibb

Drug and food interactions

Moderate

sAXagliptin food

Applies to: saxagliptin

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References (10)
  1. Jerntorp P, Almer LO (1981) "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand, 656, p. 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. (1983) "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol, 24, p. 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. (1983) "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia, 24, p. 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A (1987) "Interaction of ethanol and glipizide in humans." Diabetes Care, 10, p. 683-6
  5. (2002) "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals
  6. (2002) "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM (1981) "The pharmacology of sulfonylureas." Am J Med, 70, p. 361-72
  9. (2002) "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care, 25(Suppl 1), S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics."
Moderate

ribociclib food

Applies to: Kisqali Femara Co-Pack (letrozole / ribociclib)

GENERALLY AVOID: Pomegranates and grapefruit may increase the systemic exposure to ribociclib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in these fruits. Increased exposure to ribociclib may increase the risk of adverse effects such as infections, neutropenia, leukopenia, anemia, thrombocytopenia, anorexia, nausea, vomiting, diarrhea, stomatitis, alopecia, fatigue, headache, and abnormal liver function may be increased.

MANAGEMENT: Patients receiving ribociclib should avoid consumption of pomegranates or pomegranate juice and grapefruit or grapefruit juice during treatment.

References (1)
  1. (2017) "Product Information. Kisqali (ribociclib)." Novartis Pharmaceuticals

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.