Drug Interactions between Kisqali Femara Co-Pack and papaverine
This report displays the potential drug interactions for the following 2 drugs:
- Kisqali Femara Co-Pack (letrozole/ribociclib)
- papaverine
Interactions between your drugs
papaverine ribociclib
Applies to: papaverine and Kisqali Femara Co-Pack (letrozole / ribociclib)
MONITOR CLOSELY: Intracoronary administration of papaverine has been associated with QT interval prolongation and torsade de pointes (TdP) arrhythmia. The risk may theoretically increase in patients receiving concomitant medications that can also prolong the QT interval or cause bradycardia. QT interval prolongation has not been reported following systemic or intracavernosal administration of papaverine. The precise mechanism of papaverine-induced ventricular tachyarrhythmias has not been delineated, but may involve inhibition of potassium currents and prolongation of the action potential duration. In a study involving 182 consecutive patients undergoing fractional flow reserve measurements, premature ventricular beats occurred in 15.9% of patients following administration of intracoronary papaverine. TdP occurred in 2.8% of patients, and of those, 1.7% developed ventricular fibrillation. The incidence of intracoronary papaverine-induced ventricular tachyarrhythmias has not been determined, but has ranged between <0.67% and 8.8% following intracoronary administration of 6 mg to 20 mg. Based on numerous reports, female gender, hypokalemia, alkalosis, bradycardia, administration of papaverine into the left coronary artery, and a prior history of drug-induced QT prolongation may be risk factors for papaverine-induced fatal ventricular tachyarrhythmias. Apart from isolated case reports, there are no published data regarding the potential interaction between intracoronary papaverine and its use with other QT-prolonging drugs. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drugs involved and dosages of the drugs.
MANAGEMENT: Caution and close monitoring are advised during intracoronary administration of papaverine, particularly in patients receiving concomitant drugs that can prolong the QT interval or cause bradycardia and in patients with other risk factors described above. Some QT prolonging medications have specific monitoring, dosing, and/or other recommendations present in their labeling to help mitigate or monitor this side effect; therefore, it may be advisable to consult the package labeling of the concomitant medication if coadministration with intracoronary papaverine is being considered or deemed necessary.
References (8)
- Nakayama M, Tanaka N, Sakoda K, et al. (2015) "Papaverine-induced polymorphic ventricular tachycardia during coronary flow reserve study of patients with moderate coronary artery disease." Circ J, 79, p. 530-6
- Goto M, Sato M, Kitzazawa H, et al. (2014) "Papaverine-induced QT interval prolongation and ventricular fibrillation in a patient with a history of drug-induced QT prolongation." Intern Med, 53, p. 1629-31
- Nakayama M, Saito A, Kitazawa H, et al. (2012) "Papaverine-induced polymorphic ventricular tachycardia in relation to QTU and giant T-U waves in four cases." Intern Med, 51, p. 351-6
- Inoue T, Asahi S, Takayanagi K, Morooka S, Takabatake Y (1994) "QT prolongation and possibility of ventricular arrhythmias after intracoronary papaverine." Cardiology, 84, p. 9-13
- Vrolix M, Piessens J, De Geest H (1991) "Torsades de pointes after intracoronary papaverine." Eur Heart J, 12, p. 273-6
- Kern MJ, Deligonul U, Serota H, Gudipati C, Buckingham T (1990) "Ventricular arrhythmia due to intracoronary papaverine: analysis of QT intervals and coronary vasodilatory reserve." Cathet Cardiovasc Diagn, 19, p. 229-36
- Talman CL, Winniford MD, Rossen JD, Simonetti I, Kienzle MG, Marcus ML (1990) "Polymorphous ventricular tachycardia: a side effect of intracoronary papaverine." J Am Coll Cardiol, 15, p. 275-8
- Jain A, Jenkins MG (1989) "Intracoronary electrocardiogram during torsade des pointes secondary to intracoronary papaverine." Cathet Cardiovasc Diagn, 18, p. 255-7
letrozole ribociclib
Applies to: Kisqali Femara Co-Pack (letrozole / ribociclib) and Kisqali Femara Co-Pack (letrozole / ribociclib)
MONITOR: Coadministration with ribociclib may increase the plasma concentrations and pharmacologic effects of drugs that are substrates of CYP450 3A4. The proposed mechanism is decreased clearance due to ribociclib-mediated inhibition of CYP450 3A4 metabolism. In healthy study subjects, administration of midazolam, a sensitive CYP450 3A4 substrate, with multiple 400 mg daily doses of ribociclib increased the midazolam peak plasma concentration (Cmax) and systemic exposure (AUC) by 2.1-fold and 3.8-fold, respectively, compared to midazolam administered alone. When given at a clinically relevant dose of 600 mg daily, ribociclib is predicted to increase midazolam Cmax and AUC by 2.4-fold and 5.2-fold, respectively.
MANAGEMENT: Caution is advised when ribociclib is used concomitantly with drugs that undergo metabolism by CYP450 3A4, particularly those with a narrow therapeutic range. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever ribociclib is added to or withdrawn from therapy.
References (9)
- Zhou XJ, Zhou-Pan XR, Gauthier T, Placidi M, Maurel P, Rahmani R (1993) "Human liver microsomal cytochrome P450 3A isozymes mediated vindesine biotransformation. Metabolic drug interactions." Biochem Pharmacol, 45, p. 853-61
- Trivier JM, Libersa C, Belloc C, Lhermitte M (1993) "Amiodarone N-deethylation in human liver microsomes: involvement of cytochrome P450 3A enzymes (first report)." Life Sci, 52, pl91-6
- Rawden HC, Kokwaro GO, Ward SA, Edwards G (2000) "Relative contribution of cytochromes P-450 and flavin-containing monoxygenases to the metabolism of albendazole by human liver microsomes." Br J Clin Pharmacol, 49, p. 313-22
- DSouza DL, Levasseur LM, Nezamis J, Robbins DK, Simms L, Koch KM (2001) "Effect of alosetron on the pharmacokinetics of alprazolam." J Clin Pharmacol, 41, p. 452-4
- Katoh M, Nakajima M, Yamazaki H, Yokoi T (2001) "Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport." Eur J Pharm Sci, 12, p. 505-13
- Kane GC, Lipsky JJ (2000) "Drug-grapefruit juice interactions." Mayo Clin Proc, 75, p. 933-42
- Yu DK (1999) "The contribution of P-glycoprotein to pharmacokinetic drug-drug interactions." J Clin Pharmacol, 39, p. 1203-11
- Nagy J, Schipper HG, Koopmans RP, Butter JJ, van Boxtel CJ, Kager PA (2002) "Effect of grapefruit juice or cimetidine coadministration on albendazole bioavailability." Am J Trop Med Hyg, 66, p. 260-3
- (2017) "Product Information. Kisqali (ribociclib)." Novartis Pharmaceuticals
Drug and food interactions
ribociclib food
Applies to: Kisqali Femara Co-Pack (letrozole / ribociclib)
GENERALLY AVOID: Pomegranates and grapefruit may increase the systemic exposure to ribociclib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in these fruits. Increased exposure to ribociclib may increase the risk of adverse effects such as infections, neutropenia, leukopenia, anemia, thrombocytopenia, anorexia, nausea, vomiting, diarrhea, stomatitis, alopecia, fatigue, headache, and abnormal liver function may be increased.
MANAGEMENT: Patients receiving ribociclib should avoid consumption of pomegranates or pomegranate juice and grapefruit or grapefruit juice during treatment.
References (1)
- (2017) "Product Information. Kisqali (ribociclib)." Novartis Pharmaceuticals
papaverine food
Applies to: papaverine
MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.
MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients should also avoid driving or operating hazardous machinery until they know how the medications affect them.
References (10)
- Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
- Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
- Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
- Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
- Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
- Cerner Multum, Inc. "Australian Product Information."
- Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
- Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
- (2023) "Product Information. Buprenorphine (buprenorphine)." G.L. Pharma UK Ltd
- (2023) "Product Information. Temgesic (buprenorphine)." Reckitt Benckiser Pty Ltd
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.