Skip to main content

Drug Interactions between IsonaRif and Verelan

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

rifAMPin isoniazid

Applies to: IsonaRif (isoniazid / rifampin) and IsonaRif (isoniazid / rifampin)

MONITOR CLOSELY: The risk of hepatotoxicity is greater when rifampin and isoniazid (INH) are given concomitantly, than when either drug is given alone. The proposed mechanism is rifampin's induction of isoniazid hydrolase, an enzyme involved in the conversion of INH to isonicotinic acid and hydrazine. Hydrazine is the proposed toxic metabolite of INH, which has been shown in animal studies to cause steatosis, hepatocyte vacuolation and glutathione depletion. Some studies have also shown that slow acetylators have a two-fold increased risk of developing antituberculosis drug-induced hepatotoxicity (ATDH) as compared with fast acetylators due to more available INH for direct hydrolysis to hydrazine. Theoretically, a similar reaction may occur with rifabutin and isoniazid. Additional risk factors for developing hepatotoxicity include patients with advanced age, malnutrition, existing hepatic impairment, daily alcohol consumption, female gender, HIV infection, extra-pulmonary tuberculosis and/or patients who are taking other potent CYP450-inducing agents.

MANAGEMENT: Caution and close monitoring should be considered if isoniazid (INH) is coadministered with rifampin or rifabutin. In cases where coadministration is required, careful monitoring of liver function, especially ALT and AST, should be done at baseline and then every 2 to 4 weeks during therapy, or in accordance with individual product labeling. Some manufacturers of INH recommend strongly considering its discontinuation if serum aminotransferase concentrations (AST or SGOT, ALT or SGPT) exceed 3 to 5 times the upper limit of normal. Product labeling for rifampin also recommends the immediate discontinuation of therapy if hepatic damage is suspected. INH product labeling suggests alternate drugs be used if hepatitis is attributed to INH in patients with tuberculosis. However, if INH must be used, it should only be resumed after the patient's symptoms and laboratory abnormalities have cleared. It should also be restarted in very small, gradually increasing doses and immediately withdrawn if there is any indication of recurrent liver involvement. Patients should be counseled to immediately report signs or symptoms consistent with liver damage and notified that prodromal symptoms usually consist of fatigue, weakness, malaise, anorexia, nausea, and/or vomiting.

References

  1. O'Brien RJ, Long MW, Cross FS, et al. (1983) "Hepatotoxicity from isoniazid and rifampin among children treated for tuberculosis." Pediatrics, 72, p. 491-9
  2. Kumar A, Misra PK, Mehotra R, et al. (1991) "Hepatotoxicity of rifampin and isoniazid." Am Rev Respir Dis, 143, p. 1350-2
  3. Abadie-Kemmerly S, Pankey GA, Dalvisio JR (1988) "Failure of ketoconazole treatment of blastomyces dermatidis due to interaction of isoniazid and rifampin." Ann Intern Med, 109, p. 844-5
  4. Acocella G, Bonollo L, Garimoldi M, et al. (1972) "Kinetics of rifampicin and isoniazid administered alone and in combination to normal subjects and patients with liver disease." Gut, 13, p. 47-53
  5. Yamamoto T, Suou T, Hirayama C (1986) "Elevated serum aminotransferase induced by isoniazid in relation to isoniazid acetylator phenotype." Hepatology, 6, p. 295-8
  6. Steele MA, Burk RF, Des Prez RM (1991) "Toxic hepatitis with isoniazid and rifampin." Chest, 99, p. 465-71
  7. "Product Information. INH (isoniazid)." Ciba Pharmaceuticals, Summit, NJ.
  8. Sarma G, Immanuel C, Kailasam S, Narayana AS, Venkatesan P (1986) "Rifampin-induced release of hydrazine from isoniazid." Am Rev Respir Dis, 133, p. 1072-5
  9. (2001) "Product Information. Mycobutin (rifabutin)." Pharmacia and Upjohn
  10. (2001) "Product Information. Rifadin (rifampin)." Hoechst Marion Roussel
  11. Askgaard DS, Wilcke T, Dossing M (1995) "Hepatotoxicity caused by the combined action of isoniazid and rifampicin." Thorax, 50, p. 213-4
  12. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  13. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  14. Cerner Multum, Inc. "Australian Product Information."
  15. (2023) "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC.
  16. (2023) "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd
  17. (2023) "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB
  18. Sarma GR, Immanual C, Kailasam S, Narayana AS, Venkatesan P (2024) Rifampin-induced release of hydrazine from isoniazid. A possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampin https://pubmed.ncbi.nlm.nih.gov/3717759/
  19. Tostmann A, Boeree MJ, Aarnoutse RE, De Lange WCM, Van Der Ven AJAM, Dekhuijzen R (2024) Antituberculosis drug-induced hepatotoxicity: concise up-to-date review https://onlinelibrary.wiley.com/doi/10.1111/j.1440-1746.2007.05207.x
  20. (2021) "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc.
  21. (2022) "Product Information. Rifampin (rifAMPin)." Akorn Inc
  22. (2022) "Product Information. Rifampicin (rifampicin)." Mylan Pharmaceuticals Inc
  23. (2023) "Product Information. Rifadin (rifampicin)." Sanofi
  24. (2024) "Product Information. Rifadin (rifaMPICin)." Sanofi-Aventis Australia Pty Ltd
  25. (2019) "Product Information. Rofact (rifampin)." Bausch Health, Canada Inc.
View all 25 references

Switch to consumer interaction data

Moderate

rifAMPin verapamil

Applies to: IsonaRif (isoniazid / rifampin) and Verelan (verapamil)

MONITOR: Rifampin may decrease the bioavailability, plasma levels, and pharmacological effects of verapamil. The mechanism is induction of CYP450 3A4 hepatic metabolism by rifampin. One study reported induction of verapamil metabolism continuing at least eight days after the discontinuation of rifampin. Rifabutin is also an enzyme inducer and a similar interaction is expected.

MANAGEMENT: Patients should be closely monitored for clinical efficacy of verapamil during coadministration, and conversely, for excessive calcium channel blockade when the rifamycin is discontinued. Alternative medications may be considered. Patients should be advised to notify their physician if they experience a worsening of their symptoms (e.g., angina, arrhythmia).

References

  1. Venkatesan K (1992) "Pharmacokinetic drug interactions with rifampicin." Clin Pharmacokinet, 22, p. 47-65
  2. Borcherding SM, Baciewicz AM, Self TH (1992) "Update on rifampin drug interactions." Arch Intern Med, 152, p. 711-6
  3. Barbarash RA, Bauman JL, Fischer JH, et al. (1988) "Near-total reduction in verapamil bioavailability by rifampin: electrocardiographic correlates." Chest, 94, p. 954-9
  4. Barbarash RA (1985) "Verapamil-rifampin interaction." Drug Intell Clin Pharm, 19, p. 559-60
  5. McTavish D, Sorkin EM (1989) "Verapamil: an updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension." Drugs, 38, p. 19-76
  6. Tada Y, Tsuda Y, Otsuka T, et al. (1992) "Case report: nifedipine-rifampicin interaction attenuates the effect on blood pressure in a patient with essential hypertension." Am J Med Sci, 303, p. 25-7
  7. Fromm MF, Busse D, Kroemer HK, Eichelbaum M (1996) "Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin." Hepatology, 24, p. 796-801
  8. Strayhorn VA, Baciewicz AM, Self TH (1997) "Update on rifampin drug interactions, III." Arch Intern Med, 157, p. 2453-8
View all 8 references

Switch to consumer interaction data

Drug and food interactions

Moderate

rifAMPin food

Applies to: IsonaRif (isoniazid / rifampin)

GENERALLY AVOID: Concurrent use of rifampin in patients who ingest alcohol daily may result in an increased incidence of hepatotoxicity. The increase in hepatotoxicity may be due to an additive risk as both alcohol and rifampin are individually associated with this adverse reaction. However, the exact mechanism has not been established.

ADJUST DOSING INTERVAL: Administration with food may reduce oral rifampin absorption, increasing the risk of therapeutic failure or resistance. In a randomized, four-period crossover phase I study of 14 healthy male and female volunteers, the pharmacokinetics of single dose rifampin 600 mg were evaluated under fasting conditions and with a high-fat meal. Researchers observed that administration of rifampin with a high-fat meal reduced rifampin peak plasma concentration (Cmax) by 36%, nearly doubled the time to reach peak plasma concentration (Tmax) but reduced overall exposure (AUC) by only 6%.

MANAGEMENT: The manufacturer of oral forms of rifampin recommends administration on an empty stomach, 30 minutes before or 2 hours after meals. Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and rifampin concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with rifampin.

References

  1. (2022) "Product Information. Rifampin (rifAMPin)." Akorn Inc
  2. (2022) "Product Information. Rifampicin (rifampicin)." Mylan Pharmaceuticals Inc
  3. (2023) "Product Information. Rifadin (rifampicin)." Sanofi
  4. (2024) "Product Information. Rifadin (rifaMPICin)." Sanofi-Aventis Australia Pty Ltd
  5. Peloquin CA, Namdar R, Singleton MD, Nix DE (2024) Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids https://pubmed.ncbi.nlm.nih.gov/9925057/
  6. (2019) "Product Information. Rofact (rifampin)." Bausch Health, Canada Inc.
View all 6 references

Switch to consumer interaction data

Moderate

verapamil food

Applies to: Verelan (verapamil)

GENERALLY AVOID: Consumption of large quantities of grapefruit juice may be associated with significantly increased plasma concentrations of oral verapamil. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. One study reported no significant effect of a single administration of grapefruit juice on the pharmacokinetics of verapamil in ten hypertensive patients receiving chronic therapy. In another study conducted in nine healthy male volunteers, administration of 120 mg oral verapamil twice daily for 3 days following pretreatment with 200 mL grapefruit juice twice daily for 5 days resulted in a 57% increase in S-verapamil peak plasma concentration (Cmax), a 36% increase in S-verapamil systemic exposure (AUC), a 40% increase in R-verapamil Cmax, and a 28% increase in R-verapamil AUC compared to administration following orange juice. Elimination half-life and renal clearance of both S- and R-verapamil were not affected by grapefruit juice, and there were no significant effects on blood pressure, heart rate, or PR interval. A third study reported a 1.63-fold increase in Cmax and a 1.45-fold increase in AUC of (R,S)-verapamil in 24 young, healthy volunteers given verapamil sustained-release 120 mg twice daily for 7 days with 250 mL grapefruit juice four times daily on days 5 through 7. Two subjects developed PR interval prolongation of more than 350 ms during grapefruit juice coadministration. A high degree of interindividual variability has been observed in these studies. The interaction was also suspected in a case report of a 42-year-old woman who developed complete heart block, hypotension, hypoxic respiratory failure, severe anion gap metabolic acidosis, and hyperglycemia following accidental ingestion of three verapamil sustained-release 120 mg tablets over a span of six hours. The patient's past medical history was remarkable only for migraine headaches, for which she was receiving several medications including verapamil. Prior to admission, the patient had a 2-week history of poorly controlled migraine, and the six hours preceding hospitalization she suffered from worsening headache and palpitations progressing to altered sensorium. An extensive workup revealed elevated verapamil and norverapamil levels more than 4.5 times above the upper therapeutic limits. These levels also far exceeded those reported in the medical literature for patients taking verapamil 120 mg every 6 hours, or 480 mg in a 24-hour period. The patient recovered after receiving ventilator and vasopressor support. Upon questioning, it was discovered that the patient had been drinking large amounts of grapefruit juice (3 to 4 liters total) the week preceding her admission due to nausea. No other sources or contributing factors could be found for the verapamil toxicity.

MANAGEMENT: Patients treated with oral verapamil should avoid the consumption of large amounts of grapefruit or grapefruit juice to prevent any undue fluctuations in serum drug levels. Patients should be advised to seek medical attention if they experience edema or swelling of the lower extremities; sudden, unexplained weight gain; difficulty breathing; chest pain or tightness; or hypotension as indicated by dizziness, fainting, or orthostasis.

References

  1. McAllister RG, Jr (1982) "Clinical pharmacology of slow channel blocking agents." Prog Cardiovasc Dis, 25, p. 83-102
  2. (2001) "Product Information. Covera-HS (verapamil)." Searle
  3. Zaidenstein R, Dishi V, Gips M, Soback S, Cohen N, Weissgarten J, Blatt A, Golik A (1998) "The effect of grapefruit juice on the pharmacokinetics of orally administered verapamil." Eur J Clin Pharmacol, 54, p. 337-40
  4. Ho PC, Ghose K, Saville D, Wanwimolruk S (2000) "Effect of grapefruit juice on pharmacokinetics and pharmacodynamics of verapamil enantiomers in healthy volunteers." Eur J Clin Pharmacol, 56, p. 693-8
  5. Fuhr U, Muller-Peltzer H, Kern R, et al. (2002) "Effects of grapefruit juice and smoking on verapamil concentrations in steady state." Eur J Clin Pharmacol, 58, p. 45-53
  6. Bailey DG, Dresser GK (2004) "Natural products and adverse drug interactions." Can Med Assoc J, 170, p. 1531-2
  7. Bailey DG, Malcolm J, Arnold O, Spence JD (2004) "Grapefruit juice-drug interactions. 1998." Br J Clin Pharmacol, 58, S831-40; discussion S841-3
  8. Arayne MS, Sultana N, Bibi Z (2005) "Review: grape fruit juice - drug interactions." Pak J Pharm Sci, 18, p. 45-57
  9. Pillai U, Muzaffar J, Sandeep S, Yancey A (2009) "Grapefruit juice and verapamil: a toxic cocktail." South Med J, 102, p. 308-9
View all 9 references

Switch to consumer interaction data

Moderate

isoniazid food

Applies to: IsonaRif (isoniazid / rifampin)

GENERALLY AVOID: Concurrent use of isoniazid (INH) in patients who ingest alcohol daily may result in an increased incidence of both hepatotoxicity and peripheral neuropathy. The increase in hepatotoxicity may be due to an additive risk as both alcohol and INH are individually associated with this adverse reaction. INH-associated hepatotoxicity is believed to be due to an accumulation of toxic metabolites and may also be partly immune mediated, though the exact mechanisms are not universally agreed upon. INH is metabolized by N-acetyltransferase and CYP450 2E1. The rate of acetylation is genetically determined and generally classified as slow or rapid. Slow acetylators have been identified by some studies as having a higher risk of hepatotoxicity; therefore, this interaction may be more significant for patients who fall into this category. Other studies have postulated that alcohol-mediated CYP450 2E1 induction may play a role, as this isoenzyme is involved in INH metabolism and may be responsible for producing hepatotoxic metabolites. However, available literature is conflicting. The labeling for some INH products lists daily alcohol use or chronic alcoholism as a risk factor for hepatitis, but not all studies have found a significant association between alcohol use and INH-induced hepatotoxicity. Additionally, INH and alcohol are both associated with pyridoxine (B6) deficiency, which may increase the risk of peripheral neuropathy.

GENERALLY AVOID: Concomitant administration of isoniazid (INH) with foods containing tyramine and/or histamine may increase the risk of symptoms relating to tyramine- and/or histamine toxicity (e.g., headache, diaphoresis, flushing, palpitations, and hypotension). The proposed mechanism is INH-mediated inhibition of monoamine oxidase (MAO) and diamine oxidase (DAO), enzymes responsible for the metabolism of tyramine and histamine, respectively. Some authors have suggested that the reactions observed are mainly due to INH's effects on DAO instead of MAO or the amounts of histamine instead of tyramine present in the food. A Japanese case report recorded an example in 8 out of 25 patients on the tuberculosis ward who developed an accidental histamine poisoning after ingesting a fish paste (saury). Patients developed allergy-like symptoms, which started between 20 minutes and 2 hours after ingesting the food. A high-level of histamine (32 mg/100 g of fish) was confirmed in the saury paste and all 8 patients were both on INH and had reduced MAO concentrations. The 17 remaining patients were not on INH (n=5) or reported not eating the saury paste (n=12).

ADJUST DOSING INTERVAL: Administration with food significantly reduces oral isoniazid (INH) absorption, increasing the risk of therapeutic failure or resistance. The mechanism is unknown. Pharmacokinetic studies completed in both healthy volunteers (n=14) and tuberculosis patients (n=20 treatment-naive patients during days 1 to 3 of treatment) have resulted in almost doubling the time to reach INH's maximum concentration (tmax) and a reduction in isoniazid's maximum concentration (Cmax) of 42%-51% in patients who consumed high-fat or high-carbohydrate meals prior to INH treatment.

MANAGEMENT: The manufacturer of oral forms of isoniazid (INH) recommends administration on an empty stomach (i.e., 30 minutes before or 2 hours after meals). Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and INH concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with INH. Concomitant pyridoxine (B6) administration is also recommended to reduce the risk of peripheral neuropathy, with some authorities suggesting a dose of at least 10 mg/day. Patients should be advised to avoid foods containing tyramine (e.g., aged cheese, cured meats such as sausages and salami, fava beans, sauerkraut, soy sauce, beer, or red wine) or histamine (e.g., skipjack, tuna, mackerel, salmon) during treatment with isoniazid. Consultation of product labeling for combination products containing isoniazid and/or relevant guidelines may be helpful for more specific recommendations.

References

  1. Smith CK, Durack DT (1978) "Isoniazid and reaction to cheese." Ann Intern Med, 88, p. 520-1
  2. Dimartini A (1995) "Isoniazid, tricyclics and the ''cheese reaction''." Int Clin Psychopharmacol, 10, p. 197-8
  3. Uragoda CG, Kottegoda SR (1977) "Adverse reactions to isoniazid on ingestion of fish with a high histamine content." Tubercle, 58, p. 83-9
  4. Self TH, Chrisman CR, Baciewicz AM, Bronze MS (1999) "Isoniazid drug and food interactions." Am J Med Sci, 317, p. 304-11
  5. (2021) "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India), 2
  6. (2023) "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC.
  7. (2023) "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd
  8. (2023) "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB
  9. Saukkonen JJ, Cohn DL, Jasmer RM, et al. (2006) "An official ATS statement: hepatotoxicity of antituberculosis therapy." Am J Respir Crit Care Med, 174, p. 935-52
  10. Bouazzi OE, Hammi S, Bourkadi JE, et al. (2024) First line anti-tuberculosis induced hepatotoxicity: incidence and risk factors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326068/
  11. Wang P, Pradhan K, Zhong XB, Ma X (2016) "Isoniazid metabolism and hepatoxicity." Acta Pharm Sin B, 6, p. 384-92
  12. Saktiawati AM, Sturkenboom MG, Stienstra Y, et al. (2016) "Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment naive TB patients: a randomized cross-over trial." J Antimicrob Chemother, 71, p. 703-10
  13. Hahn JA, Ngabirano C, Fatch R, et al. (2023) "Safety and tolerability of isoniazid preventive therapy for tuberculosis for persons with HIV with and without alcohol use." AIDS, 37, p. 1535-43
  14. Huang YS, Chern HD, Su WJ, et al. (2003) "Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis." Hepatology, 37, p. 924-30
  15. Sousou JM, Griffith EM, Marsalisi C, Reddy P (2024) Pyridoxine deficiency and neurologic dysfunction: an unlikely association. https://www.cureus.com/articles/188310-pyridoxine-deficiency-and-neurologic-dysfunction-an-unlikely-association?score_article=true#!/
  16. Miki M, Ishikawa T, Okayama H (2005) "An outbreak of histamine poisoning after ingestion of the ground saury paste in eight patients taking isoniazid in tuberculous ward." Intern Med, 44, p. 1133-6
  17. (2021) "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc.
View all 17 references

Switch to consumer interaction data

Moderate

verapamil food

Applies to: Verelan (verapamil)

GENERALLY AVOID: Verapamil may increase the blood concentrations and intoxicating effects of ethanol. The exact mechanism of interaction is unknown but may involve verapamil inhibition of ethanol metabolism. In 10 healthy, young volunteers, verapamil (80 mg orally every 8 hours for 6 days) increased the mean peak blood concentration (Cmax) and the 12-hour area under the concentration-time curve (AUC) of ethanol (0.8 g/kg single oral dose) by 17% and 30%, respectively, compared to placebo. Verapamil AUCs were positively correlated to increased ethanol blood AUC values. Subjectively (i.e. each subject's perception of intoxication as measured on a visual analog scale), verapamil also significantly increased the area under the ethanol effect versus time curve but did not change the peak effect or time to peak effect.

MANAGEMENT: Patients treated with verapamil should be counseled to avoid alcohol consumption.

References

  1. Bauer LA, Schumock G, Horn J, Opheim K (1992) "Verapamil inhibits ethanol elimination and prolongs the perception of intoxication." Clin Pharmacol Ther, 52, p. 6-10
  2. (2001) "Product Information. Isoptin (verapamil)." Knoll Pharmaceutical Company

Switch to consumer interaction data

Moderate

verapamil food

Applies to: Verelan (verapamil)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.