Skip to main content

Drug Interactions between insulin degludec / liraglutide and isoniazid / pyrazinamide / rifampin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

rifAMPin isoniazid

Applies to: isoniazid / pyrazinamide / rifampin and isoniazid / pyrazinamide / rifampin

MONITOR CLOSELY: The risk of hepatotoxicity is greater when rifampin and isoniazid (INH) are given concomitantly, than when either drug is given alone. The proposed mechanism is rifampin's induction of isoniazid hydrolase, an enzyme involved in the conversion of INH to isonicotinic acid and hydrazine. Hydrazine is the proposed toxic metabolite of INH, which has been shown in animal studies to cause steatosis, hepatocyte vacuolation and glutathione depletion. Some studies have also shown that slow acetylators have a two-fold increased risk of developing antituberculosis drug-induced hepatotoxicity (ATDH) as compared with fast acetylators due to more available INH for direct hydrolysis to hydrazine. Theoretically, a similar reaction may occur with rifabutin and isoniazid. Additional risk factors for developing hepatotoxicity include patients with advanced age, malnutrition, existing hepatic impairment, daily alcohol consumption, female gender, HIV infection, extra-pulmonary tuberculosis and/or patients who are taking other potent CYP450-inducing agents.

MANAGEMENT: Caution and close monitoring should be considered if isoniazid (INH) is coadministered with rifampin or rifabutin. In cases where coadministration is required, careful monitoring of liver function, especially ALT and AST, should be done at baseline and then every 2 to 4 weeks during therapy, or in accordance with individual product labeling. Some manufacturers of INH recommend strongly considering its discontinuation if serum aminotransferase concentrations (AST or SGOT, ALT or SGPT) exceed 3 to 5 times the upper limit of normal. Product labeling for rifampin also recommends the immediate discontinuation of therapy if hepatic damage is suspected. INH product labeling suggests alternate drugs be used if hepatitis is attributed to INH in patients with tuberculosis. However, if INH must be used, it should only be resumed after the patient's symptoms and laboratory abnormalities have cleared. It should also be restarted in very small, gradually increasing doses and immediately withdrawn if there is any indication of recurrent liver involvement. Patients should be counseled to immediately report signs or symptoms consistent with liver damage and notified that prodromal symptoms usually consist of fatigue, weakness, malaise, anorexia, nausea, and/or vomiting.

References

  1. O'Brien RJ, Long MW, Cross FS, et al. (1983) "Hepatotoxicity from isoniazid and rifampin among children treated for tuberculosis." Pediatrics, 72, p. 491-9
  2. Kumar A, Misra PK, Mehotra R, et al. (1991) "Hepatotoxicity of rifampin and isoniazid." Am Rev Respir Dis, 143, p. 1350-2
  3. Abadie-Kemmerly S, Pankey GA, Dalvisio JR (1988) "Failure of ketoconazole treatment of blastomyces dermatidis due to interaction of isoniazid and rifampin." Ann Intern Med, 109, p. 844-5
  4. Acocella G, Bonollo L, Garimoldi M, et al. (1972) "Kinetics of rifampicin and isoniazid administered alone and in combination to normal subjects and patients with liver disease." Gut, 13, p. 47-53
  5. Yamamoto T, Suou T, Hirayama C (1986) "Elevated serum aminotransferase induced by isoniazid in relation to isoniazid acetylator phenotype." Hepatology, 6, p. 295-8
  6. Steele MA, Burk RF, Des Prez RM (1991) "Toxic hepatitis with isoniazid and rifampin." Chest, 99, p. 465-71
  7. "Product Information. INH (isoniazid)." Ciba Pharmaceuticals, Summit, NJ.
  8. Sarma G, Immanuel C, Kailasam S, Narayana AS, Venkatesan P (1986) "Rifampin-induced release of hydrazine from isoniazid." Am Rev Respir Dis, 133, p. 1072-5
  9. (2001) "Product Information. Mycobutin (rifabutin)." Pharmacia and Upjohn
  10. (2001) "Product Information. Rifadin (rifampin)." Hoechst Marion Roussel
  11. Askgaard DS, Wilcke T, Dossing M (1995) "Hepatotoxicity caused by the combined action of isoniazid and rifampicin." Thorax, 50, p. 213-4
  12. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  13. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  14. Cerner Multum, Inc. "Australian Product Information."
  15. (2023) "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC.
  16. (2023) "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd
  17. (2023) "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB
  18. Sarma GR, Immanual C, Kailasam S, Narayana AS, Venkatesan P (2024) Rifampin-induced release of hydrazine from isoniazid. A possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampin https://pubmed.ncbi.nlm.nih.gov/3717759/
  19. Tostmann A, Boeree MJ, Aarnoutse RE, De Lange WCM, Van Der Ven AJAM, Dekhuijzen R (2024) Antituberculosis drug-induced hepatotoxicity: concise up-to-date review https://onlinelibrary.wiley.com/doi/10.1111/j.1440-1746.2007.05207.x
  20. (2021) "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc.
  21. (2022) "Product Information. Rifampin (rifAMPin)." Akorn Inc
  22. (2022) "Product Information. Rifampicin (rifampicin)." Mylan Pharmaceuticals Inc
  23. (2023) "Product Information. Rifadin (rifampicin)." Sanofi
  24. (2024) "Product Information. Rifadin (rifaMPICin)." Sanofi-Aventis Australia Pty Ltd
  25. (2019) "Product Information. Rofact (rifampin)." Bausch Health, Canada Inc.
View all 25 references

Switch to consumer interaction data

Major

rifAMPin pyrazinamide

Applies to: isoniazid / pyrazinamide / rifampin and isoniazid / pyrazinamide / rifampin

GENERALLY AVOID: A two-month regimen consisting of rifampin (RIF) and pyrazinamide (PZA) for the treatment of latent tuberculosis infection (LTBI) has been associated with liver injury resulting in high rates of hospitalization and death. The exact mechanism of interaction is unknown, although both agents are individually hepatotoxic and may have additive effects on the liver during coadministration. In one prospective cohort study of 224 patients in a community setting between 1999 and 2001, investigators found that the risk of hepatotoxicity in patients receiving the RIF-PZA regimen was increased threefold compared to patients receiving six months of isoniazid (INH). When patients were monitored more intensively, severe hepatotoxicity did not develop, but the difference did not reach statistical significance.

MANAGEMENT: The American Thoracic Society and the Centers for Disease Control and Prevention recommend that the two-month RIF-PZA regimen generally not be offered to patients with LTBI (Note: This recommendation does not apply to the appropriate use of RIF and PZA in multidrug regimens for the treatment of persons with active TB disease). A nine-month course of daily INH remains the preferred treatment for LTBI in both HIV-negative and HIV-positive patients. Other acceptable options include nine months of twice-weekly INH, or six months of either daily or twice-weekly INH. Twice-weekly therapy must be administered under direct observed therapy (DOT), and the six-month regimens should generally not be used in HIV-infected individuals, those with fibrotic lesions on chest radiographs, and children. Four months of daily RIF may be considered for persons who are contacts of patients with INH-resistant, RIF-susceptible TB. The RIF-PZA regimen should never be offered to patients who are taking concomitant medications associated with liver injury; patients who drink alcohol excessively (even if alcohol use is discontinued during treatment); patients with underlying liver disease; and patients with a history of INH-associated liver injury. RIF-PZA may be considered in carefully selected patients if there is reason to believe they are not likely to complete the preferred six- or nine-month regimens. If RIF-PZA is prescribed, the PZA dosage should be no more than 20 mg/kg/day (up to a maximum of 2 g/day) or 50 mg/kg twice weekly (up to a maximum of 4 g twice weekly), and no more than a two-week supply of the medications should be dispensed at any given time. Patients should be evaluated in person by a healthcare provider at 2, 4, and 6 weeks of treatment for adherence, tolerance and adverse effects, and at 8 weeks to document treatment completion. Patients should also be instructed to discontinue the drugs promptly and seek medical attention if signs and symptoms of hepatic injury develop, including fever, rash, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, and jaundice. Serum transaminases and bilirubin should be measured at baseline and at 2, 4, 6, and 8 weeks of treatment in patients taking RIF-PZA. Therapy should be withdrawn and not resumed if transaminase levels exceed five times the upper limit of normal or are anywhere above the normal range when accompanied by symptoms of hepatitis, or if serum bilirubin is greater than the normal range. U.S. healthcare providers should report possible cases of RIF-PZA hepatotoxicity to CDC's Division of Tuberculosis Elimination, telephone 404-639-8442.

References

  1. CDC. Centers for Disease Control. (2001) "Update: fatal and severe liver injuries associated with rifampin and pyrazinamide for latent tuberculosis infection, and revisions in American Thoracic Society/CDC recommendations--United States, 2001." Morb Mortal Wkly Rep, 50, p. 733-5
  2. Jasmer RM, Saukkonen JJ, Blumberg HM, et al. (2002) "Short-Course Rifampin and Pyrazinamide Compared with Isoniazid for Latent Tuberculosis Infection: A Multicenter Clinical Trial." Ann Intern Med, 137, p. 640-647
  3. (2002) "Update: Fatal and severe liver injuries associated with rifampin and pyrazinamide treatment for latent tuberculosis infection." MMWR Morb Mortal Wkly Rep, 51, p. 998-9
  4. McNeill L, Allen M, Estrada C, Cook P (2003) "Pyrazinamide and rifampin vs isoniazid for the treatment of latent tuberculosis: improved completion rates but more hepatotoxicity." Chest, 123, p. 102-6
  5. Kunimoto D, Warman A, Beckon A, Doering D, Melenka L (2003) "Severe hepatotoxicity associated with rifampin-pyrazinamide preventative therapy requiring transplantation in an individual at low risk for hepatotoxicity." Clin Infect Dis, 36, E158-61
  6. CDC. Centers for Disease Control and Prevention. (2003) "Update: Adverse event data and revised American Thoracic Society/CDC recommendations against the use of rifampin and pyrazinamide for treatment of latent tuberculosis infection--United States, 2003." MMWR Morb Mortal Wkly Rep, 52, p. 735-9
View all 6 references

Switch to consumer interaction data

Moderate

isoniazid pyrazinamide

Applies to: isoniazid / pyrazinamide / rifampin and isoniazid / pyrazinamide / rifampin

MONITOR: Coadministration of isoniazid (INH) with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. INH-associated hepatotoxicity is believed to be due to an accumulation of toxic metabolites and may also be partly immune mediated, though the exact mechanisms are not universally agreed upon. INH is metabolized by N-acetyltransferase and CYP450 2E1. The rate of INH's acetylation is genetically determined and generally classified as slow or rapid, with slow acetylators characterized by a relative lack of N-acetyltransferase. While the rate of acetylation does not significantly alter INH's effectiveness, it can lead to higher blood levels of INH and an increase of adverse reactions. In addition, INH is an in vitro inhibitor of several CYP450 isoenzymes (2C9, 2C19, 2E1, and 3A4). Coadministration of hepatotoxic drugs eliminated by one or more of these pathways may lead to elevated concentrations of the concomitant drug and increase the risk of hepatotoxicity. Most of the INH-associated hepatitis cases occur during the first 3 months of treatment, but may occur at any time and have been reported to be severe or even fatal. INH is reported in medical literature to cause clinically apparent acute liver injury with jaundice in 0.5% to 1% and fatality in 0.05% to 0.1% of recipients. A United States Public Health Service Surveillance Study of 13,838 people taking INH reported 8 deaths among 174 cases of hepatitis. Risk factors for INH related liver injury may include: age > 35 years, female gender, postpartum period, daily consumption of alcohol, injection drug user, slow acetylator phenotype, malnutrition, HIV infection, pre-existing liver disease, extra-pulmonary tuberculosis, and concomitant use of hepatotoxic medications. Clinical data have been reported with concurrent use of acetaminophen, alcohol, carbamazepine, phenobarbital, phenytoin, and rifampin.

MANAGEMENT: Coadministration of isoniazid (INH) with other hepatotoxic medications should be done with caution and close clinical monitoring. Some authorities recommend avoiding concurrent use when possible. If coadministration is needed, baseline and monthly liver function testing as well as monthly interviewing of the patient to check for signs and symptoms of adverse effects is recommended. More frequent testing may be advisable in patients at increased risk of INH-associated liver injury. Some manufacturers of INH recommend strongly considering its discontinuation if serum aminotransferase concentrations (AST or SGOT, ALT or SGPT) exceed 3 to 5 times the upper limit of normal. Patients should be counseled to immediately report signs or symptoms consistent with liver damage and notified that prodromal symptoms usually consist of fatigue, weakness, malaise, anorexia, nausea, and/or vomiting. If hepatic damage is suspected, INH should be immediately discontinued as continuation may lead to more severe damage. If hepatitis is attributed to INH in patients with tuberculosis, alternative drugs should be used. However, if INH must be used, it should only be resumed after the patient's symptoms and laboratory abnormalities have cleared. It should also be restarted in very small, gradually increasing doses and immediately withdrawn if there is any indication of recurrent liver involvement. Consultation with product labeling and relevant guidelines is advisable.

References

  1. (2021) "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India), 2
  2. (2023) "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC.
  3. (2023) "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd
  4. (2023) "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB
  5. Saukkonen JJ, Cohn DL, Jasmer RM, et al. (2006) "An official ATS statement: hepatotoxicity of antituberculosis therapy." Am J Respir Crit Care Med, 174, p. 935-52
  6. Bouazzi OE, Hammi S, Bourkadi JE, et al. (2024) First line anti-tuberculosis induced hepatotoxicity: incidence and risk factors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326068/
  7. Metushi I, Uetrecht J, Phillips E (2016) "Mechanism of isoniazid-induced hepatotoxicity: then and now." Br J Clin Pharmacol, 81, p. 1030-6
  8. National Institute of Diabetes and Digestive and Kidney Diseases (2024) LiverTox: clinical and research information on drug-induced liver injury [internet]. Isoniazid. https://www.ncbi.nlm.nih.gov/books/NBK548754/
  9. (2021) "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc.
View all 9 references

Switch to consumer interaction data

Moderate

isoniazid liraglutide

Applies to: isoniazid / pyrazinamide / rifampin and insulin degludec / liraglutide

MONITOR: The efficacy of insulin and other antidiabetic agents may be diminished by certain drugs, including atypical antipsychotics, corticosteroids, diuretics, estrogens, gonadotropin-releasing hormone agonists, human growth hormone, phenothiazines, progestins, protease inhibitors, sympathomimetic amines, thyroid hormones, L-asparaginase, alpelisib, copanlisib, danazol, diazoxide, isoniazid, megestrol, omacetaxine, phenytoin, sirolimus, tagraxofusp, temsirolimus, as well as pharmacologic dosages of nicotinic acid and adrenocorticotropic agents. These drugs may interfere with blood glucose control because they can cause hyperglycemia, glucose intolerance, new-onset diabetes mellitus, and/or exacerbation of preexisting diabetes.

MANAGEMENT: Caution is advised when drugs that can interfere with glucose metabolism are prescribed to patients with diabetes. Close clinical monitoring of glycemic control is recommended following initiation or discontinuation of these drugs, and the dosages of concomitant antidiabetic agents adjusted as necessary. Patients should be advised to notify their physician if their blood glucose is consistently high or if they experience symptoms of severe hyperglycemia such as excessive thirst and increases in the volume or frequency of urination. Likewise, patients should be observed for hypoglycemia when these drugs are withdrawn from their therapeutic regimen.

References

  1. Greenstone MA, Shaw AB (1987) "Alternate day corticosteroid causes alternate day hyperglycaemia." Postgrad Med J, 63, p. 761-4
  2. Pollare T, Lithell H, Berne C (1989) "A comparison of the effects of hydrochlorothiazide and captopril on glucose and lipid metabolism in patients with hypertension." N Engl J Med, 321, p. 868-73
  3. Carter BL, Small RE, Mandel MD, Starkman MT (1981) "Phenytoin-induced hyperglycemia." Am J Hosp Pharm, 38, p. 1508-12
  4. Al-Rubeaan K, Ryan EA (1991) "Phenytoin-induced insulin insensitivity." Diabet Med, 8, p. 968-70
  5. Chaudhuri ML, Catania J (1988) "A comparison of the effects of bumetanide (Burinex) and frusemide on carbohydrate metabolism in the elderly." Br J Clin Pract, 42, p. 427-9
  6. Goldman JA, Neri A, Ovadia J, Eckerling B, Vries A, de (1969) "Effect of chlorothiazide on intravenous glucose tolerance in pregnancy." Am J Obstet Gynecol, 105, p. 556-60
  7. Miller NR, Moses H (1978) "Transient oculomotor nerve palsy. Association with thiazide-induced glucose intolerance." JAMA, 240, p. 1887-8
  8. Kansal PC, Buse J, Buse MG (1969) "Thiazide diuretics and control of diabetes mellitus." South Med J, 62, p. 1372-9
  9. Andersen OO, Persson I (1968) "Carbohydrate metabolism during treatment with chlorthalidone and ethacrynic acid." Br Med J, 2, p. 798-801
  10. Curtis J, Horrigan F, Ahearn D, Varney R, Sandler SG (1972) "Chlorthalidone-induced hyperosmolar hyperglycemic nonketotic coma." JAMA, 220, p. 1592-3
  11. Chowdhury FR, Bleicher SJ (1970) "Chlorthalidone--induced hypokalemia and abnormal carbohydrate metabolism." Horm Metab Res, 2, p. 13-6
  12. Diamond MT (1972) "Hyperglycemic hyperosmolar coma associated with hydrochlorothiazide and pancreatitis." N Y State J Med, 72, p. 1741-2
  13. Jones IG, Pickens PT (1967) "Diabetes mellitus following oral diuretics." Practitioner, 199, p. 209-10
  14. Black DM, Filak AT (1989) "Hyperglycemia with non-insulin-dependent diabetes following intraarticular steroid injection." J Fam Pract, 28, p. 462-3
  15. Gunnarsson R, Lundgren G, Magnusson G, Ost L, Groth CG (1980) "Steroid diabetes--a sign of overtreatment with steroids in the renal graft recipient?" Scand J Urol Nephrol Suppl, 54, p. 135-8
  16. Murphy MB, Kohner E, Lewis PJ, Schumer B, Dollery CT (1982) "Glucose intolerance in hypertensive patients treated with diuretics: a fourteen-year follow-up." Lancet, 2, p. 1293-5
  17. Seltzer HS, Allen EW (1969) "Hyperglycemia and inhibition of insulin secretion during administration of diazoxide and trichlormethiazide in man." Diabetes, 18, p. 19-28
  18. Jori A, Carrara MC (1966) "On the mechanism of the hyperglycaemic effect of chlorpromazine." J Pharm Pharmacol, 18, p. 623-4
  19. Erle G, Basso M, Federspil G, Sicolo N, Scandellari C (1977) "Effect of chlorpromazine on blood glucose and plasma insulin in man." Eur J Clin Pharmacol, 11, p. 15-8
  20. (2002) "Product Information. Thorazine (chlorpromazine)." SmithKline Beecham
  21. (2002) "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals
  22. (2002) "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals
  23. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  24. (2002) "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical
  25. (2001) "Product Information. Carafate (sucralfate)." Hoechst Marion Roussel
  26. Stambaugh JE, Tucker DC (1974) "Effect of diphenylhydantoin on glucose tolerance in patients with hypoglycemia." Diabetes, 23, p. 679-83
  27. Malherbe C, Burrill KC, Levin SR, Karam JH, Forsham PH (1972) "Effect of diphenylhydantoin on insulin secretion in man." N Engl J Med, 286, p. 339-42
  28. Javier Z, Gershberg H, Hulse M (1968) "Ovulatory suppressants, estrogens, and carbohydrate metabolism." Metabolism, 17, p. 443-56
  29. Sotaniemi E, Kontturi M, Larmi T (1973) "Effect of diethylstilbestrol on blood glucose of prostatic cancer patients." Invest Urol, 10, p. 438-41
  30. Bell DS (1993) "Insulin resistance. An often unrecognized problem accompanying chronic medical disorders." Postgrad Med, 93, 99-103,
  31. Berlin I (1993) "Prazosin, diuretics, and glucose intolerance." Ann Intern Med, 119, p. 860
  32. Rowe P, Mather H (1985) "Hyperosmolar non-ketotic diabetes mellitus associated with metolazone." Br Med J, 291, p. 25-6
  33. Haiba NA, el-Habashy MA, Said SA, Darwish EA, Abdel-Sayed WS, Nayel SE (1989) "Clinical evaluation of two monthly injectable contraceptives and their effects on some metabolic parameters." Contraception, 39, p. 619-32
  34. Virutamasen P, Wongsrichanalai C, Tangkeo P, Nitichai Y, Rienprayoon D (1986) "Metabolic effects of depot-medroxyprogesterone acetate in long-term users: a cross-sectional study." Int J Gynaecol Obstet, 24, p. 291-6
  35. Dimitriadis G, Tegos C, Golfinopoulou L, Roboti C, Raptis S (1993) "Furosemide-induced hyperglycaemia - the implication of glycolytic kinases." Horm Metab Res, 25, p. 557-9
  36. Goldman JA, Ovadia JL (1969) "The effect of estrogen on intravenous glucose tolerance in woman." Am J Obstet Gynecol, 103, p. 172-8
  37. Hannaford PC, Kay CR (1989) "Oral contraceptives and diabetes mellitus." BMJ, 299, p. 1315-6
  38. Spellacy WN, Ellingson AB, Tsibris JC (1989) "The effects of two triphasic oral contraceptives on carbohydrate metabolism in women during 1 year of use." Fertil Steril, 51, p. 71-4
  39. Ludvik B, Clodi M, Kautzky-Willer A, Capek M, Hartter E, Pacini G, Prager R (1993) "Effect of dexamethasone on insulin sensitivity, islet amyloid polypeptide and insulin secretion in humans." Diabetologia, 36, p. 84-7
  40. Domenet JG (1968) "Diabetogenic effect of oral diuretics." Br Med J, 3, p. 188
  41. Coni NK, Gordon PW, Mukherjee AP, Read PR (1974) "The effect of frusemide and ethacrynic acid on carbohydrate metabolism." Age Ageing, 3, p. 85-90
  42. Schmitz O, Hermansen K, Nielsen OH, Christensen CK, Arnfred J, Hansen HE, Mogensen CE, Orskov H, Beck-Nielsen H (1986) "Insulin action in insulin-dependent diabetics after short-term thiazide therapy." Diabetes Care, 9, p. 631-6
  43. Blayac JP, Ribes G, Buys D, Puech R, Loubatieres-Mariani MM (1981) "Effects of a new benzothiadiazine derivative, LN 5330, on insulin secretion." Arch Int Pharmacodyn Ther, 253, p. 154-63
  44. Elmfeldt D, Berglund G, Wedel H, Wilhelmsen L (1983) "Incidence and importance of metabolic side-effects during antihypertensive therapy." Acta Med Scand Suppl, 672, p. 79-83
  45. Winchester JF, Kellett RJ, Boddy K, Boyle P, Dargie HJ, Mahaffey ME, Ward DM, Kennedy AC (1980) "Metolazone and bendroflumethiazide in hypertension: physiologic and metabolic observations." Clin Pharmacol Ther, 28, p. 611-8
  46. Petri M, Cumber P, Grimes L, Treby D, Bryant R, Rawlins D, Ising H (1986) "The metabolic effects of thiazide therapy in the elderly: a population study." Age Ageing, 15, p. 151-5
  47. (2001) "Product Information. Glucophage (metformin)." Bristol-Myers Squibb
  48. Harper R, Ennis CN, Heaney AP, Sheridan B, Gormley M, Atkinson AB, Johnston GD, Bell PM (1995) "A comparison of the effects of low- and conventional-dose thiazide diuretic on insulin action in hypertensive patients with NIDDM." Diabetologia, 38, p. 853-9
  49. (2001) "Product Information. Precose (acarbose)." Bayer
  50. (2001) "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical
  51. (2001) "Product Information. Amaryl (glimepiride)." Hoechst Marion Roussel
  52. Charan VD, Desai N, Singh AP, Choudhry VP (1993) "Diabetes mellitus and pancreatitis as a complication of L- asparaginase therapy." Indian Pediatr, 30, p. 809-10
  53. Seifer DB, Freedman LN, Cavender JR, Baker RA (1990) "Insulin-dependent diabetes mellitus associated with danazol." Am J Obstet Gynecol, 162, p. 474-5
  54. (2001) "Product Information. Crixivan (indinavir)." Merck & Co., Inc
  55. Pickkers P, Schachter M, Hughes AD, Feher MD, Sever PS (1996) "Thiazide-induced hyperglycaemia: a role for calcium-activated potassium channels?" Diabetologia, 39, p. 861-4
  56. (2001) "Product Information. Viracept (nelfinavir)." Agouron Pharma Inc
  57. Dube MP, Johnson DL, Currier JS, Leedom JM (1997) "Protease inhibitor-associated hyperglycaemia." Lancet, 350, p. 713-4
  58. (2001) "Product Information. Oncaspar (pegaspargase)." Rhone Poulenc Rorer
  59. (2001) "Product Information. Prandin (repaglinide)." Novo Nordisk Pharmaceuticals Inc
  60. (2001) "Product Information. Elspar (asparaginase)." Merck & Co., Inc
  61. (2022) "Product Information. Hyperstat (diazoxide)." Apothecon Inc
  62. (2001) "Product Information. Megace (megestrol)." Bristol-Myers Squibb
  63. Walli R, Demant T (1998) "Impaired glucose tolerance and protease inhibitors." Ann Intern Med, 129, p. 837-8
  64. (2001) "Product Information. Agenerase (amprenavir)." Glaxo Wellcome
  65. Mauss S, Wolf E, Jaeger H (1999) "Impaired glucose tolerance in HIV-positive patients receiving and those not receiving protease inhibitors." Ann Intern Med, 130, p. 162-3
  66. Kaufman MB, Simionatto C (1999) "A review of protease inhibitor-induced hyperglycemia." Pharmacotherapy, 19, p. 114-7
  67. (2001) "Product Information. Tolinase (tolazamide)." Pharmacia and Upjohn
  68. (2001) "Product Information. Orinase (tolbutamide)." Pharmacia and Upjohn
  69. (2001) "Product Information. Dymelor (acetohexamide)." Lilly, Eli and Company
  70. Wehring H, Alexander B, Perry PJ (2000) "Diabetes mellitus associated with clozapine therapy." Pharmacotherapy, 20, p. 844-7
  71. Tsiodras S, Mantzoros C, Hammer S, Samore M (2000) "Effects of protease inhibitors on hyperglycemia, hyperlipidemia, and lipodystrophy - A 5-year cohort study." Arch Intern Med, 160, p. 2050-6
  72. (2001) "Product Information. Fortovase (saquinavir)." Roche Laboratories
  73. (2001) "Product Information. Starlix (nateglinide)." Novartis Pharmaceuticals
  74. Hardy H, Esch LD, Morse GD (2001) "Glucose disorders associated with HIV and its drug therapy." Ann Pharmacother, 35, p. 343-51
  75. Leary WP, Reyes AJ (1984) "Drug interactions with diuretics." S Afr Med J, 65, p. 455-61
  76. (2022) "Product Information. NovoLOG Mix 70/30 (insulin aspart-insulin aspart protamine)." Novo Nordisk Pharmaceuticals Inc
  77. (2003) "Product Information. Reyataz (atazanavir)." Bristol-Myers Squibb
  78. (2003) "Product Information. Lexiva (fosamprenavir)." GlaxoSmithKline
  79. (2004) "Product Information. Apidra (insulin glulisine)." Aventis Pharmaceuticals
  80. (2006) "Product Information. Prezista (darunavir)." Ortho Biotech Inc
  81. (2006) "Product Information. Zolinza (vorinostat)." Merck & Co., Inc
  82. (2007) "Product Information. Torisel (temsirolimus)." Wyeth-Ayerst Laboratories
  83. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
  84. (2019) "Product Information. Elzonris (tagraxofusp)." Stemline Therapeutics
  85. (2019) "Product Information. Piqray (alpelisib)." Novartis Pharmaceuticals
View all 85 references

Switch to consumer interaction data

Moderate

isoniazid insulin degludec

Applies to: isoniazid / pyrazinamide / rifampin and insulin degludec / liraglutide

MONITOR: The efficacy of insulin and other antidiabetic agents may be diminished by certain drugs, including atypical antipsychotics, corticosteroids, diuretics, estrogens, gonadotropin-releasing hormone agonists, human growth hormone, phenothiazines, progestins, protease inhibitors, sympathomimetic amines, thyroid hormones, L-asparaginase, alpelisib, copanlisib, danazol, diazoxide, isoniazid, megestrol, omacetaxine, phenytoin, sirolimus, tagraxofusp, temsirolimus, as well as pharmacologic dosages of nicotinic acid and adrenocorticotropic agents. These drugs may interfere with blood glucose control because they can cause hyperglycemia, glucose intolerance, new-onset diabetes mellitus, and/or exacerbation of preexisting diabetes.

MANAGEMENT: Caution is advised when drugs that can interfere with glucose metabolism are prescribed to patients with diabetes. Close clinical monitoring of glycemic control is recommended following initiation or discontinuation of these drugs, and the dosages of concomitant antidiabetic agents adjusted as necessary. Patients should be advised to notify their physician if their blood glucose is consistently high or if they experience symptoms of severe hyperglycemia such as excessive thirst and increases in the volume or frequency of urination. Likewise, patients should be observed for hypoglycemia when these drugs are withdrawn from their therapeutic regimen.

References

  1. Greenstone MA, Shaw AB (1987) "Alternate day corticosteroid causes alternate day hyperglycaemia." Postgrad Med J, 63, p. 761-4
  2. Pollare T, Lithell H, Berne C (1989) "A comparison of the effects of hydrochlorothiazide and captopril on glucose and lipid metabolism in patients with hypertension." N Engl J Med, 321, p. 868-73
  3. Carter BL, Small RE, Mandel MD, Starkman MT (1981) "Phenytoin-induced hyperglycemia." Am J Hosp Pharm, 38, p. 1508-12
  4. Al-Rubeaan K, Ryan EA (1991) "Phenytoin-induced insulin insensitivity." Diabet Med, 8, p. 968-70
  5. Chaudhuri ML, Catania J (1988) "A comparison of the effects of bumetanide (Burinex) and frusemide on carbohydrate metabolism in the elderly." Br J Clin Pract, 42, p. 427-9
  6. Goldman JA, Neri A, Ovadia J, Eckerling B, Vries A, de (1969) "Effect of chlorothiazide on intravenous glucose tolerance in pregnancy." Am J Obstet Gynecol, 105, p. 556-60
  7. Miller NR, Moses H (1978) "Transient oculomotor nerve palsy. Association with thiazide-induced glucose intolerance." JAMA, 240, p. 1887-8
  8. Kansal PC, Buse J, Buse MG (1969) "Thiazide diuretics and control of diabetes mellitus." South Med J, 62, p. 1372-9
  9. Andersen OO, Persson I (1968) "Carbohydrate metabolism during treatment with chlorthalidone and ethacrynic acid." Br Med J, 2, p. 798-801
  10. Curtis J, Horrigan F, Ahearn D, Varney R, Sandler SG (1972) "Chlorthalidone-induced hyperosmolar hyperglycemic nonketotic coma." JAMA, 220, p. 1592-3
  11. Chowdhury FR, Bleicher SJ (1970) "Chlorthalidone--induced hypokalemia and abnormal carbohydrate metabolism." Horm Metab Res, 2, p. 13-6
  12. Diamond MT (1972) "Hyperglycemic hyperosmolar coma associated with hydrochlorothiazide and pancreatitis." N Y State J Med, 72, p. 1741-2
  13. Jones IG, Pickens PT (1967) "Diabetes mellitus following oral diuretics." Practitioner, 199, p. 209-10
  14. Black DM, Filak AT (1989) "Hyperglycemia with non-insulin-dependent diabetes following intraarticular steroid injection." J Fam Pract, 28, p. 462-3
  15. Gunnarsson R, Lundgren G, Magnusson G, Ost L, Groth CG (1980) "Steroid diabetes--a sign of overtreatment with steroids in the renal graft recipient?" Scand J Urol Nephrol Suppl, 54, p. 135-8
  16. Murphy MB, Kohner E, Lewis PJ, Schumer B, Dollery CT (1982) "Glucose intolerance in hypertensive patients treated with diuretics: a fourteen-year follow-up." Lancet, 2, p. 1293-5
  17. Seltzer HS, Allen EW (1969) "Hyperglycemia and inhibition of insulin secretion during administration of diazoxide and trichlormethiazide in man." Diabetes, 18, p. 19-28
  18. Jori A, Carrara MC (1966) "On the mechanism of the hyperglycaemic effect of chlorpromazine." J Pharm Pharmacol, 18, p. 623-4
  19. Erle G, Basso M, Federspil G, Sicolo N, Scandellari C (1977) "Effect of chlorpromazine on blood glucose and plasma insulin in man." Eur J Clin Pharmacol, 11, p. 15-8
  20. (2002) "Product Information. Thorazine (chlorpromazine)." SmithKline Beecham
  21. (2002) "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals
  22. (2002) "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals
  23. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  24. (2002) "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical
  25. (2001) "Product Information. Carafate (sucralfate)." Hoechst Marion Roussel
  26. Stambaugh JE, Tucker DC (1974) "Effect of diphenylhydantoin on glucose tolerance in patients with hypoglycemia." Diabetes, 23, p. 679-83
  27. Malherbe C, Burrill KC, Levin SR, Karam JH, Forsham PH (1972) "Effect of diphenylhydantoin on insulin secretion in man." N Engl J Med, 286, p. 339-42
  28. Javier Z, Gershberg H, Hulse M (1968) "Ovulatory suppressants, estrogens, and carbohydrate metabolism." Metabolism, 17, p. 443-56
  29. Sotaniemi E, Kontturi M, Larmi T (1973) "Effect of diethylstilbestrol on blood glucose of prostatic cancer patients." Invest Urol, 10, p. 438-41
  30. Bell DS (1993) "Insulin resistance. An often unrecognized problem accompanying chronic medical disorders." Postgrad Med, 93, 99-103,
  31. Berlin I (1993) "Prazosin, diuretics, and glucose intolerance." Ann Intern Med, 119, p. 860
  32. Rowe P, Mather H (1985) "Hyperosmolar non-ketotic diabetes mellitus associated with metolazone." Br Med J, 291, p. 25-6
  33. Haiba NA, el-Habashy MA, Said SA, Darwish EA, Abdel-Sayed WS, Nayel SE (1989) "Clinical evaluation of two monthly injectable contraceptives and their effects on some metabolic parameters." Contraception, 39, p. 619-32
  34. Virutamasen P, Wongsrichanalai C, Tangkeo P, Nitichai Y, Rienprayoon D (1986) "Metabolic effects of depot-medroxyprogesterone acetate in long-term users: a cross-sectional study." Int J Gynaecol Obstet, 24, p. 291-6
  35. Dimitriadis G, Tegos C, Golfinopoulou L, Roboti C, Raptis S (1993) "Furosemide-induced hyperglycaemia - the implication of glycolytic kinases." Horm Metab Res, 25, p. 557-9
  36. Goldman JA, Ovadia JL (1969) "The effect of estrogen on intravenous glucose tolerance in woman." Am J Obstet Gynecol, 103, p. 172-8
  37. Hannaford PC, Kay CR (1989) "Oral contraceptives and diabetes mellitus." BMJ, 299, p. 1315-6
  38. Spellacy WN, Ellingson AB, Tsibris JC (1989) "The effects of two triphasic oral contraceptives on carbohydrate metabolism in women during 1 year of use." Fertil Steril, 51, p. 71-4
  39. Ludvik B, Clodi M, Kautzky-Willer A, Capek M, Hartter E, Pacini G, Prager R (1993) "Effect of dexamethasone on insulin sensitivity, islet amyloid polypeptide and insulin secretion in humans." Diabetologia, 36, p. 84-7
  40. Domenet JG (1968) "Diabetogenic effect of oral diuretics." Br Med J, 3, p. 188
  41. Coni NK, Gordon PW, Mukherjee AP, Read PR (1974) "The effect of frusemide and ethacrynic acid on carbohydrate metabolism." Age Ageing, 3, p. 85-90
  42. Schmitz O, Hermansen K, Nielsen OH, Christensen CK, Arnfred J, Hansen HE, Mogensen CE, Orskov H, Beck-Nielsen H (1986) "Insulin action in insulin-dependent diabetics after short-term thiazide therapy." Diabetes Care, 9, p. 631-6
  43. Blayac JP, Ribes G, Buys D, Puech R, Loubatieres-Mariani MM (1981) "Effects of a new benzothiadiazine derivative, LN 5330, on insulin secretion." Arch Int Pharmacodyn Ther, 253, p. 154-63
  44. Elmfeldt D, Berglund G, Wedel H, Wilhelmsen L (1983) "Incidence and importance of metabolic side-effects during antihypertensive therapy." Acta Med Scand Suppl, 672, p. 79-83
  45. Winchester JF, Kellett RJ, Boddy K, Boyle P, Dargie HJ, Mahaffey ME, Ward DM, Kennedy AC (1980) "Metolazone and bendroflumethiazide in hypertension: physiologic and metabolic observations." Clin Pharmacol Ther, 28, p. 611-8
  46. Petri M, Cumber P, Grimes L, Treby D, Bryant R, Rawlins D, Ising H (1986) "The metabolic effects of thiazide therapy in the elderly: a population study." Age Ageing, 15, p. 151-5
  47. (2001) "Product Information. Glucophage (metformin)." Bristol-Myers Squibb
  48. Harper R, Ennis CN, Heaney AP, Sheridan B, Gormley M, Atkinson AB, Johnston GD, Bell PM (1995) "A comparison of the effects of low- and conventional-dose thiazide diuretic on insulin action in hypertensive patients with NIDDM." Diabetologia, 38, p. 853-9
  49. (2001) "Product Information. Precose (acarbose)." Bayer
  50. (2001) "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical
  51. (2001) "Product Information. Amaryl (glimepiride)." Hoechst Marion Roussel
  52. Charan VD, Desai N, Singh AP, Choudhry VP (1993) "Diabetes mellitus and pancreatitis as a complication of L- asparaginase therapy." Indian Pediatr, 30, p. 809-10
  53. Seifer DB, Freedman LN, Cavender JR, Baker RA (1990) "Insulin-dependent diabetes mellitus associated with danazol." Am J Obstet Gynecol, 162, p. 474-5
  54. (2001) "Product Information. Crixivan (indinavir)." Merck & Co., Inc
  55. Pickkers P, Schachter M, Hughes AD, Feher MD, Sever PS (1996) "Thiazide-induced hyperglycaemia: a role for calcium-activated potassium channels?" Diabetologia, 39, p. 861-4
  56. (2001) "Product Information. Viracept (nelfinavir)." Agouron Pharma Inc
  57. Dube MP, Johnson DL, Currier JS, Leedom JM (1997) "Protease inhibitor-associated hyperglycaemia." Lancet, 350, p. 713-4
  58. (2001) "Product Information. Oncaspar (pegaspargase)." Rhone Poulenc Rorer
  59. (2001) "Product Information. Prandin (repaglinide)." Novo Nordisk Pharmaceuticals Inc
  60. (2001) "Product Information. Elspar (asparaginase)." Merck & Co., Inc
  61. (2022) "Product Information. Hyperstat (diazoxide)." Apothecon Inc
  62. (2001) "Product Information. Megace (megestrol)." Bristol-Myers Squibb
  63. Walli R, Demant T (1998) "Impaired glucose tolerance and protease inhibitors." Ann Intern Med, 129, p. 837-8
  64. (2001) "Product Information. Agenerase (amprenavir)." Glaxo Wellcome
  65. Mauss S, Wolf E, Jaeger H (1999) "Impaired glucose tolerance in HIV-positive patients receiving and those not receiving protease inhibitors." Ann Intern Med, 130, p. 162-3
  66. Kaufman MB, Simionatto C (1999) "A review of protease inhibitor-induced hyperglycemia." Pharmacotherapy, 19, p. 114-7
  67. (2001) "Product Information. Tolinase (tolazamide)." Pharmacia and Upjohn
  68. (2001) "Product Information. Orinase (tolbutamide)." Pharmacia and Upjohn
  69. (2001) "Product Information. Dymelor (acetohexamide)." Lilly, Eli and Company
  70. Wehring H, Alexander B, Perry PJ (2000) "Diabetes mellitus associated with clozapine therapy." Pharmacotherapy, 20, p. 844-7
  71. Tsiodras S, Mantzoros C, Hammer S, Samore M (2000) "Effects of protease inhibitors on hyperglycemia, hyperlipidemia, and lipodystrophy - A 5-year cohort study." Arch Intern Med, 160, p. 2050-6
  72. (2001) "Product Information. Fortovase (saquinavir)." Roche Laboratories
  73. (2001) "Product Information. Starlix (nateglinide)." Novartis Pharmaceuticals
  74. Hardy H, Esch LD, Morse GD (2001) "Glucose disorders associated with HIV and its drug therapy." Ann Pharmacother, 35, p. 343-51
  75. Leary WP, Reyes AJ (1984) "Drug interactions with diuretics." S Afr Med J, 65, p. 455-61
  76. (2022) "Product Information. NovoLOG Mix 70/30 (insulin aspart-insulin aspart protamine)." Novo Nordisk Pharmaceuticals Inc
  77. (2003) "Product Information. Reyataz (atazanavir)." Bristol-Myers Squibb
  78. (2003) "Product Information. Lexiva (fosamprenavir)." GlaxoSmithKline
  79. (2004) "Product Information. Apidra (insulin glulisine)." Aventis Pharmaceuticals
  80. (2006) "Product Information. Prezista (darunavir)." Ortho Biotech Inc
  81. (2006) "Product Information. Zolinza (vorinostat)." Merck & Co., Inc
  82. (2007) "Product Information. Torisel (temsirolimus)." Wyeth-Ayerst Laboratories
  83. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
  84. (2019) "Product Information. Elzonris (tagraxofusp)." Stemline Therapeutics
  85. (2019) "Product Information. Piqray (alpelisib)." Novartis Pharmaceuticals
View all 85 references

Switch to consumer interaction data

Moderate

liraglutide insulin degludec

Applies to: insulin degludec / liraglutide and insulin degludec / liraglutide

ADJUST DOSE: Coadministration of a glucagon-like peptide-1 (GLP-1) receptor agonist or dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist with insulin may potentiate the risk of hypoglycemia. GLP-1 receptor agonists and dual GLP-1 and GIP receptor agonists lower blood glucose by stimulating insulin secretion and lowering glucagon secretion. An increased incidence of hypoglycemia has been observed in patients treated with a combination of basal insulin and GLP-1 or dual GLP-1 and GIP receptor agonists. Additionally, patients with diabetic retinopathy who received treatment with basal insulin and subcutaneous semaglutide in one clinical trial had an increased risk of developing diabetic retinopathy complications. Rapid improvement in glucose control has been associated with a temporary worsening of diabetic retinopathy, but other mechanisms cannot be excluded. The safety and efficacy of GLP-1 or dual GLP-1 and GIP receptor agonists in combination with non-basal insulin have not been established.

MANAGEMENT: When a GLP-1 receptor agonist or dual GLP-1 and GIP receptor agonist is used as add-on therapy to basal insulin, a lower dosage of insulin may be required. Some clinical trials have reduced the basal insulin dose by 20% in patients with a baseline hemoglobin A1c <= 8% when a GLP-1 or dual GLP-1 and GIP receptor agonist was initiated. Because diabetic ketoacidosis has been reported in insulin-dependent patients after rapid discontinuation or dose reduction of insulin, a stepwise approach to insulin dose reduction is recommended and blood glucose levels should be closely monitored. Patients should receive guidance on the recognition and management of hypoglycemia as well as precautions to take to avoid hypoglycemia, particularly while driving or operating hazardous machinery. Those with diabetic retinopathy should also be monitored for progression of the condition or complications. A rapid improvement in glucose control has been associated with a temporary worsening of diabetic retinopathy.

References

  1. (2005) "Product Information. Byetta (exenatide)." Amylin Pharmaceuticals Inc
  2. (2010) "Product Information. Victoza (liraglutide)." Novo Nordisk Pharmaceuticals Inc
  3. (2014) "Product Information. Tanzeum (albiglutide)." GlaxoSmithKline
  4. (2014) "Product Information. Trulicity (dulaglutide)." Eli Lilly and Company
  5. (2016) "Product Information. Adlyxin (lixisenatide)." sanofi-aventis
  6. (2022) "Product Information. Ozempic (1 mg dose) (semaglutide)." Novo Nordisk Pharmaceuticals Inc
  7. (2022) "Product Information. Mounjaro (tirzepatide)." Lilly, Eli and Company
  8. (2022) "Product Information. Wegovy (2.4 mg dose) (semaglutide)." Novo Nordisk Pharmaceuticals Inc, SUPPL-3
  9. (2023) "Product Information. Bydureon BCise (exenatide)." AstraZeneca UK Ltd
  10. (2022) "Product Information. Byetta Prefilled Pen (exenatide)." Astra-Zeneca Pharmaceuticals
  11. (2014) "Product Information. Eperzan (albiglutide)." GlaxoSmithKline UK Ltd
  12. (2023) "Product Information. Trulicity (dulaglutide)." Eli Lilly and Company Ltd
  13. (2022) "Product Information. Saxenda (liraglutide)." Novo Nordisk Ltd
  14. (2022) "Product Information. Victoza (liraglutide)." Novo Nordisk Ltd
  15. (2022) "Product Information. Lyxumia (lixisenatide)." Sanofi
  16. (2023) "Product Information. Ozempic (semaglutide)." Novo Nordisk Ltd
View all 16 references

Switch to consumer interaction data

Drug and food interactions

Moderate

rifAMPin food

Applies to: isoniazid / pyrazinamide / rifampin

GENERALLY AVOID: Concurrent use of rifampin in patients who ingest alcohol daily may result in an increased incidence of hepatotoxicity. The increase in hepatotoxicity may be due to an additive risk as both alcohol and rifampin are individually associated with this adverse reaction. However, the exact mechanism has not been established.

ADJUST DOSING INTERVAL: Administration with food may reduce oral rifampin absorption, increasing the risk of therapeutic failure or resistance. In a randomized, four-period crossover phase I study of 14 healthy male and female volunteers, the pharmacokinetics of single dose rifampin 600 mg were evaluated under fasting conditions and with a high-fat meal. Researchers observed that administration of rifampin with a high-fat meal reduced rifampin peak plasma concentration (Cmax) by 36%, nearly doubled the time to reach peak plasma concentration (Tmax) but reduced overall exposure (AUC) by only 6%.

MANAGEMENT: The manufacturer of oral forms of rifampin recommends administration on an empty stomach, 30 minutes before or 2 hours after meals. Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and rifampin concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with rifampin.

References

  1. (2022) "Product Information. Rifampin (rifAMPin)." Akorn Inc
  2. (2022) "Product Information. Rifampicin (rifampicin)." Mylan Pharmaceuticals Inc
  3. (2023) "Product Information. Rifadin (rifampicin)." Sanofi
  4. (2024) "Product Information. Rifadin (rifaMPICin)." Sanofi-Aventis Australia Pty Ltd
  5. Peloquin CA, Namdar R, Singleton MD, Nix DE (2024) Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids https://pubmed.ncbi.nlm.nih.gov/9925057/
  6. (2019) "Product Information. Rofact (rifampin)." Bausch Health, Canada Inc.
View all 6 references

Switch to consumer interaction data

Moderate

isoniazid food

Applies to: isoniazid / pyrazinamide / rifampin

GENERALLY AVOID: Concurrent use of isoniazid (INH) in patients who ingest alcohol daily may result in an increased incidence of both hepatotoxicity and peripheral neuropathy. The increase in hepatotoxicity may be due to an additive risk as both alcohol and INH are individually associated with this adverse reaction. INH-associated hepatotoxicity is believed to be due to an accumulation of toxic metabolites and may also be partly immune mediated, though the exact mechanisms are not universally agreed upon. INH is metabolized by N-acetyltransferase and CYP450 2E1. The rate of acetylation is genetically determined and generally classified as slow or rapid. Slow acetylators have been identified by some studies as having a higher risk of hepatotoxicity; therefore, this interaction may be more significant for patients who fall into this category. Other studies have postulated that alcohol-mediated CYP450 2E1 induction may play a role, as this isoenzyme is involved in INH metabolism and may be responsible for producing hepatotoxic metabolites. However, available literature is conflicting. The labeling for some INH products lists daily alcohol use or chronic alcoholism as a risk factor for hepatitis, but not all studies have found a significant association between alcohol use and INH-induced hepatotoxicity. Additionally, INH and alcohol are both associated with pyridoxine (B6) deficiency, which may increase the risk of peripheral neuropathy.

GENERALLY AVOID: Concomitant administration of isoniazid (INH) with foods containing tyramine and/or histamine may increase the risk of symptoms relating to tyramine- and/or histamine toxicity (e.g., headache, diaphoresis, flushing, palpitations, and hypotension). The proposed mechanism is INH-mediated inhibition of monoamine oxidase (MAO) and diamine oxidase (DAO), enzymes responsible for the metabolism of tyramine and histamine, respectively. Some authors have suggested that the reactions observed are mainly due to INH's effects on DAO instead of MAO or the amounts of histamine instead of tyramine present in the food. A Japanese case report recorded an example in 8 out of 25 patients on the tuberculosis ward who developed an accidental histamine poisoning after ingesting a fish paste (saury). Patients developed allergy-like symptoms, which started between 20 minutes and 2 hours after ingesting the food. A high-level of histamine (32 mg/100 g of fish) was confirmed in the saury paste and all 8 patients were both on INH and had reduced MAO concentrations. The 17 remaining patients were not on INH (n=5) or reported not eating the saury paste (n=12).

ADJUST DOSING INTERVAL: Administration with food significantly reduces oral isoniazid (INH) absorption, increasing the risk of therapeutic failure or resistance. The mechanism is unknown. Pharmacokinetic studies completed in both healthy volunteers (n=14) and tuberculosis patients (n=20 treatment-naive patients during days 1 to 3 of treatment) have resulted in almost doubling the time to reach INH's maximum concentration (tmax) and a reduction in isoniazid's maximum concentration (Cmax) of 42%-51% in patients who consumed high-fat or high-carbohydrate meals prior to INH treatment.

MANAGEMENT: The manufacturer of oral forms of isoniazid (INH) recommends administration on an empty stomach (i.e., 30 minutes before or 2 hours after meals). Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and INH concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with INH. Concomitant pyridoxine (B6) administration is also recommended to reduce the risk of peripheral neuropathy, with some authorities suggesting a dose of at least 10 mg/day. Patients should be advised to avoid foods containing tyramine (e.g., aged cheese, cured meats such as sausages and salami, fava beans, sauerkraut, soy sauce, beer, or red wine) or histamine (e.g., skipjack, tuna, mackerel, salmon) during treatment with isoniazid. Consultation of product labeling for combination products containing isoniazid and/or relevant guidelines may be helpful for more specific recommendations.

References

  1. Smith CK, Durack DT (1978) "Isoniazid and reaction to cheese." Ann Intern Med, 88, p. 520-1
  2. Dimartini A (1995) "Isoniazid, tricyclics and the ''cheese reaction''." Int Clin Psychopharmacol, 10, p. 197-8
  3. Uragoda CG, Kottegoda SR (1977) "Adverse reactions to isoniazid on ingestion of fish with a high histamine content." Tubercle, 58, p. 83-9
  4. Self TH, Chrisman CR, Baciewicz AM, Bronze MS (1999) "Isoniazid drug and food interactions." Am J Med Sci, 317, p. 304-11
  5. (2021) "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India), 2
  6. (2023) "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC.
  7. (2023) "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd
  8. (2023) "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB
  9. Saukkonen JJ, Cohn DL, Jasmer RM, et al. (2006) "An official ATS statement: hepatotoxicity of antituberculosis therapy." Am J Respir Crit Care Med, 174, p. 935-52
  10. Bouazzi OE, Hammi S, Bourkadi JE, et al. (2024) First line anti-tuberculosis induced hepatotoxicity: incidence and risk factors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326068/
  11. Wang P, Pradhan K, Zhong XB, Ma X (2016) "Isoniazid metabolism and hepatoxicity." Acta Pharm Sin B, 6, p. 384-92
  12. Saktiawati AM, Sturkenboom MG, Stienstra Y, et al. (2016) "Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment naive TB patients: a randomized cross-over trial." J Antimicrob Chemother, 71, p. 703-10
  13. Hahn JA, Ngabirano C, Fatch R, et al. (2023) "Safety and tolerability of isoniazid preventive therapy for tuberculosis for persons with HIV with and without alcohol use." AIDS, 37, p. 1535-43
  14. Huang YS, Chern HD, Su WJ, et al. (2003) "Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis." Hepatology, 37, p. 924-30
  15. Sousou JM, Griffith EM, Marsalisi C, Reddy P (2024) Pyridoxine deficiency and neurologic dysfunction: an unlikely association. https://www.cureus.com/articles/188310-pyridoxine-deficiency-and-neurologic-dysfunction-an-unlikely-association?score_article=true#!/
  16. Miki M, Ishikawa T, Okayama H (2005) "An outbreak of histamine poisoning after ingestion of the ground saury paste in eight patients taking isoniazid in tuberculous ward." Intern Med, 44, p. 1133-6
  17. (2021) "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc.
View all 17 references

Switch to consumer interaction data

Moderate

liraglutide food

Applies to: insulin degludec / liraglutide

MONITOR: Glucagon-like peptide-1 (GLP-1) receptor agonists and dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists can delay gastric emptying, which may impact the absorption of concomitantly administered oral medications. Mild to moderate decreases in plasma concentrations of coadministered drugs have been demonstrated in pharmacokinetic studies for some GLP-1 receptor agonists (e.g., exenatide, lixisenatide), but not others. According to the prescribing information, liraglutide did not affect the absorption of several orally administered drugs to any clinically significant extent, including acetaminophen, atorvastatin, digoxin, griseofulvin, lisinopril, and an oral contraceptive containing ethinyl estradiol-levonorgestrel. Likewise, no clinically relevant effect on absorption was observed for concomitantly administered oral drugs studied with albiglutide (digoxin, ethinyl estradiol-norethindrone, simvastatin, warfarin), dulaglutide (acetaminophen, atorvastatin, digoxin, ethinyl estradiol-norelgestromin, lisinopril, metformin, metoprolol, sitagliptin, warfarin), or semaglutide (atorvastatin, digoxin, ethinyl estradiol-levonorgestrel, metformin, warfarin). The impact of dual GLP-1 and GIP receptor agonist tirzepatide on gastric emptying was reported to be dose- and time-dependent, with the greatest effect observed after a single 5 mg dose but diminished after subsequent doses. When acetaminophen was administered following a single 5 mg dose of tirzepatide, acetaminophen peak plasma concentration (Cmax) was decreased by 50% and its median time to peak plasma concentration (Tmax) delayed by 1 hour. However, no significant impact on acetaminophen Cmax and Tmax was observed after 4 consecutive weekly doses of tirzepatide (5 mg/5 mg/8 mg/10 mg), and the overall exposure (AUC) of acetaminophen was unaffected. Tirzepatide at lower doses of 0.5 mg and 1.5 mg also had minimal effects on acetaminophen exposure.

MANAGEMENT: Although no specific dosage adjustment of concomitant medications is generally recommended based on available data, potential clinical impact on some oral medications cannot be ruled out, particularly those with a narrow therapeutic index or low bioavailability, those that depend on threshold concentrations for efficacy (e.g., antibiotics), and those that require rapid gastrointestinal absorption (e.g., hypnotics, analgesics). Pharmacologic response to concomitantly administered oral medications should be monitored more closely following initiation, dose adjustment, or discontinuation of a GLP-1 receptor agonist or a dual GLP-1 and GIP receptor agonist.

References

  1. (2005) "Product Information. Byetta (exenatide)." Amylin Pharmaceuticals Inc
  2. (2010) "Product Information. Victoza (liraglutide)." Novo Nordisk Pharmaceuticals Inc
  3. (2014) "Product Information. Tanzeum (albiglutide)." GlaxoSmithKline
  4. (2014) "Product Information. Trulicity (dulaglutide)." Eli Lilly and Company
  5. (2016) "Product Information. Adlyxin (lixisenatide)." sanofi-aventis
  6. (2022) "Product Information. Ozempic (1 mg dose) (semaglutide)." Novo Nordisk Pharmaceuticals Inc
  7. (2023) "Product Information. Mounjaro (tirzepatide)." Eli Lilly and Company Ltd
  8. (2023) "Product Information. Mounjaro (tirzepatide)." Lilly, Eli and Company
  9. Eli Lilly Canada Inc. (2023) Product monograph including patient medication information MOUNJARO tirzepatide injection. https://pdf.hres.ca/dpd_pm/00068421.PDF
View all 9 references

Switch to consumer interaction data

Moderate

insulin degludec food

Applies to: insulin degludec / liraglutide

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References

  1. Jerntorp P, Almer LO (1981) "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand, 656, p. 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. (1983) "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol, 24, p. 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. (1983) "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia, 24, p. 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A (1987) "Interaction of ethanol and glipizide in humans." Diabetes Care, 10, p. 683-6
  5. (2002) "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals
  6. (2002) "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM (1981) "The pharmacology of sulfonylureas." Am J Med, 70, p. 361-72
  9. (2002) "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care, 25(Suppl 1), S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 10 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.