Drug Interactions between hydroxyzine and levomethadyl acetate
This report displays the potential drug interactions for the following 2 drugs:
- hydroxyzine
- levomethadyl acetate
Interactions between your drugs
hydrOXYzine levomethadyl acetate
Applies to: hydroxyzine and levomethadyl acetate
Using levomethadyl acetate together with hydrOXYzine is not recommended. Combining these medications can increase the risk of an irregular heart rhythm that may be serious and potentially life-threatening, although it is a relatively rare side effect. You may be more susceptible if you have a heart condition called congenital long QT syndrome, other cardiac diseases, conduction abnormalities, or electrolyte disturbances (for example, magnesium or potassium loss due to severe or prolonged diarrhea or vomiting). Talk to your doctor if you have any questions or concerns. Your doctor may be able to prescribe alternatives that do not interact. You should seek immediate medical attention if you develop sudden dizziness, lightheadedness, fainting, shortness of breath, or heart palpitations during treatment with either of these medications. It is important to tell your doctor about all other medications you use, including vitamins and herbs. Do not stop using any medications without first talking to your doctor.
Drug and food/lifestyle interactions
levomethadyl acetate food/lifestyle
Applies to: levomethadyl acetate
Do not consume grapefruit or grapefruit juice during treatment with levomethadyl acetate unless directed otherwise by your doctor. Grapefruit juice may increase the blood levels of levomethadyl acetate. This can increase the risk of an irregular heart rhythm that may be serious and potentially life-threatening, although it is a relatively rare side effect. You may be more susceptible if you have a heart condition called congenital long QT syndrome, other cardiac diseases, conduction abnormalities, or electrolyte disturbances (for example, magnesium or potassium loss due to severe or prolonged diarrhea or vomiting). You should also avoid alcohol during treatment, as it may add to the central nervous system effects of levomethadyl acetate and increase the risk of serious side effects such as respiratory depression, low blood pressure, fainting, coma, and even death. Do not drive, operate machinery, or perform other hazardous activities until you know how the medication affects you. Talk to your doctor if you have any questions or concerns. You should seek immediate medical attention if you develop sudden dizziness, lightheadedness, fainting, shortness of breath, or heart palpitations during treatment. It is important to tell your doctor about all other medications you use, including vitamins and herbs. Do not stop using any medications without first talking to your doctor.
hydrOXYzine food/lifestyle
Applies to: hydroxyzine
Alcohol can increase the nervous system side effects of hydrOXYzine such as dizziness, drowsiness, and difficulty concentrating. Some people may also experience impairment in thinking and judgment. You should avoid or limit the use of alcohol while being treated with hydrOXYzine. Do not use more than the recommended dose of hydrOXYzine, and avoid activities requiring mental alertness such as driving or operating hazardous machinery until you know how the medication affects you. Talk to your doctor or pharmacist if you have any questions or concerns.
Disease interactions
levomethadyl acetate Abnormal Electrocardiogram
Applies to: Abnormal Electrocardiogram
The use of levomethadyl acetate has been associated with prolongation of the QTc interval in some patients during serial EKGs performed in a pharmacokinetics study. This change was not dose-related, and adverse cardiac events have not been attributed to the drug during clinical trials. Therapy with levomethadyl acetate should be administered cautiously in patients with a history of known cardiac conduction defects. Clinical monitoring of cardiovascular status is recommended during therapy.
levomethadyl acetate Acute Alcohol Intoxication
Applies to: Acute Alcohol Intoxication
The use of opiate agonists is contraindicated in patients with acute alcohol intoxication exhibiting depressed vital signs. The central nervous system depressant effects of opiate agonists may be additive with those of alcohol. Severe respiratory depression and death may occur. Therapy with opiate agonists should be administered cautiously in patients who might be prone to acute alcohol intake.
levomethadyl acetate Altered Consciousness
Applies to: Altered Consciousness
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
levomethadyl acetate Arrhythmias
Applies to: Arrhythmias
The use of levomethadyl acetate has been associated with prolongation of the QTc interval in some patients during serial EKGs performed in a pharmacokinetics study. This change was not dose-related, and adverse cardiac events have not been attributed to the drug during clinical trials. Therapy with levomethadyl acetate should be administered cautiously in patients with a history of known cardiac conduction defects. Clinical monitoring of cardiovascular status is recommended during therapy.
levomethadyl acetate Asphyxia
Applies to: Asphyxia
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
levomethadyl acetate Brain/Intracranial Tumor
Applies to: Brain / Intracranial Tumor
The hypoventilation associated with administration of opiate agonists, particularly by the intravenous route, can induce cerebral hypoxia and vasodilatation with resultant increase in intracranial pressure. Opiate agonists should not be used in patients with suspected or known head injury or increased intracranial pressure. Also, clinicians treating such patients should be aware that opiate agonists may interfere with the evaluation of CNS function, especially with respect to consciousness levels, respiratory status, and pupillary changes.
levomethadyl acetate Brain/Intracranial Tumor
Applies to: Brain / Intracranial Tumor
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
levomethadyl acetate Cerebral Vascular Disorder
Applies to: Cerebral Vascular Disorder
The hypoventilation associated with administration of opiate agonists, particularly by the intravenous route, can induce cerebral hypoxia and vasodilatation with resultant increase in intracranial pressure. Opiate agonists should not be used in patients with suspected or known head injury or increased intracranial pressure. Also, clinicians treating such patients should be aware that opiate agonists may interfere with the evaluation of CNS function, especially with respect to consciousness levels, respiratory status, and pupillary changes.
levomethadyl acetate Cerebral Vascular Disorder
Applies to: Cerebral Vascular Disorder
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
levomethadyl acetate Constipation
Applies to: Constipation
Narcotic (opioid) analgesic agents increase smooth muscle tone in the gastrointestinal tract and decrease peristalsis, which can lead to elevated intraluminal pressure, spasm, and constipation following prolonged use. In patients with severe or acute inflammatory bowel disease, the decrease in colonic motility may induce toxic megacolon. Therapy with opioids should be administered cautiously in patients with gastrointestinal obstruction, constipation, inflammatory bowel disease, or recent gastrointestinal tract surgery. Gastrointestinal effects appear to be the most pronounced with morphine.
levomethadyl acetate Dehydration
Applies to: Dehydration
Opiate agonists can induce vasodilation and significant hypotension, particularly when given in high dosages and/or by rapid intravenous administration. Opiate analgesics cause vasodilatation that may exacerbate hypotension and hypoperfusion and, therefore, are contraindicated in circulatory shock. At therapeutic analgesic dosages, ambulatory patients are more likely to experience dizziness and hypotension than patients who are confined to bed. However, orthostatic hypotension may occur in supine patients upon rising. Therapy with opiate agonists should be administered cautiously and initiated at reduced dosages in patients with hypovolemia, or a predisposition to hypotension. When given by intramuscular or subcutaneous administration, clinicians should also be aware that impaired perfusion in these patients may prevent complete absorption of the drug. With repeated injections, an excessive amount may be absorbed suddenly if normal circulation is reestablished.
hydrOXYzine Depression
Applies to: Depression
A variety of abnormal thinking and behavior changes have been reported to occur in association with the use of most anxiolytics, sedatives and hypnotics. Some of these changes include decreased inhibition, aggressiveness, agitation, and hallucinations. These drugs can cause or exacerbate mental depression and cause suicidal behavior and ideation. Therapy with these drugs should be administered cautiously in patients with a history of depression or other psychiatric disorders. Patients should be monitored for any changes in mood or behavior. It may be prudent to refrain from dispensing large quantities of medication to these patients.
levomethadyl acetate Gastrointestinal Obstruction
Applies to: Gastrointestinal Obstruction
Opioid analgesics are contraindicated in patients with known or suspected gastrointestinal obstruction, including paralytic ileus.
levomethadyl acetate Gastrointestinal Obstruction
Applies to: Gastrointestinal Obstruction
Narcotic (opioid) analgesic agents increase smooth muscle tone in the gastrointestinal tract and decrease peristalsis, which can lead to elevated intraluminal pressure, spasm, and constipation following prolonged use. In patients with severe or acute inflammatory bowel disease, the decrease in colonic motility may induce toxic megacolon. Therapy with opioids should be administered cautiously in patients with gastrointestinal obstruction, constipation, inflammatory bowel disease, or recent gastrointestinal tract surgery. Gastrointestinal effects appear to be the most pronounced with morphine.
levomethadyl acetate Head Injury
Applies to: Head Injury
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
levomethadyl acetate Head Injury
Applies to: Head Injury
The hypoventilation associated with administration of opiate agonists, particularly by the intravenous route, can induce cerebral hypoxia and vasodilatation with resultant increase in intracranial pressure. Opiate agonists should not be used in patients with suspected or known head injury or increased intracranial pressure. Also, clinicians treating such patients should be aware that opiate agonists may interfere with the evaluation of CNS function, especially with respect to consciousness levels, respiratory status, and pupillary changes.
hydrOXYzine Heart Disease
Applies to: Heart Disease
Hydroxyzine is contraindicated in patients with a QT prolonged interval. Cases of QT prolongation and Torsade de Pointes have been reported during postmarketing studies. Most of the cases reported occurred in patients with other risk factors for QT prolongation, such as preexisting heart disease, electrolyte imbalances or arrhythmogenic drug use. Therefore, hydroxyzine should be used with caution in patients with risk factors for QT prolongation, congenital long QT syndrome, family history of long QT syndrome or other predisposing conditions, as well as myocardial infarction, uncompensated heart failure, and bradyarrhythmias.
levomethadyl acetate Hypotension
Applies to: Hypotension
Opiate agonists can induce vasodilation and significant hypotension, particularly when given in high dosages and/or by rapid intravenous administration. Opiate analgesics cause vasodilatation that may exacerbate hypotension and hypoperfusion and, therefore, are contraindicated in circulatory shock. At therapeutic analgesic dosages, ambulatory patients are more likely to experience dizziness and hypotension than patients who are confined to bed. However, orthostatic hypotension may occur in supine patients upon rising. Therapy with opiate agonists should be administered cautiously and initiated at reduced dosages in patients with hypovolemia, or a predisposition to hypotension. When given by intramuscular or subcutaneous administration, clinicians should also be aware that impaired perfusion in these patients may prevent complete absorption of the drug. With repeated injections, an excessive amount may be absorbed suddenly if normal circulation is reestablished.
levomethadyl acetate Infectious Diarrhea/Enterocolitis/Gastroenteritis
Applies to: Infectious Diarrhea / Enterocolitis / Gastroenteritis
Narcotic (opioid) analgesic agents may prolong and/or worsen diarrhea associated with organisms that invade the intestinal mucosa, such as toxigenic Escherichia coli, Salmonella, Shigella, and pseudomembranous colitis due to broad-spectrum antibiotics. These agents decrease gastrointestinal motility, which may delay the excretion of infective gastroenteric organisms and/or their toxins. Other symptoms and complications such as fever, shedding of organisms, and extraintestinal illness may also be increased or prolonged. Therapy with opioids should be avoided or administered cautiously in patients with infectious diarrhea, particularly that due to pseudomembranous enterocolitis or enterotoxin-producing bacteria or if accompanied by high fever, pus, or blood in the stool.
levomethadyl acetate Inflammatory Bowel Disease
Applies to: Inflammatory Bowel Disease
Narcotic (opioid) analgesic agents increase smooth muscle tone in the gastrointestinal tract and decrease peristalsis, which can lead to elevated intraluminal pressure, spasm, and constipation following prolonged use. In patients with severe or acute inflammatory bowel disease, the decrease in colonic motility may induce toxic megacolon. Therapy with opioids should be administered cautiously in patients with gastrointestinal obstruction, constipation, inflammatory bowel disease, or recent gastrointestinal tract surgery. Gastrointestinal effects appear to be the most pronounced with morphine.
levomethadyl acetate Intestinal Anastomoses
Applies to: Intestinal Anastomoses
Narcotic (opioid) analgesic agents increase smooth muscle tone in the gastrointestinal tract and decrease peristalsis, which can lead to elevated intraluminal pressure, spasm, and constipation following prolonged use. In patients with severe or acute inflammatory bowel disease, the decrease in colonic motility may induce toxic megacolon. Therapy with opioids should be administered cautiously in patients with gastrointestinal obstruction, constipation, inflammatory bowel disease, or recent gastrointestinal tract surgery. Gastrointestinal effects appear to be the most pronounced with morphine.
hydrOXYzine Long QT Syndrome
Applies to: Long QT Syndrome
Hydroxyzine is contraindicated in patients with a QT prolonged interval. Cases of QT prolongation and Torsade de Pointes have been reported during postmarketing studies. Most of the cases reported occurred in patients with other risk factors for QT prolongation, such as preexisting heart disease, electrolyte imbalances or arrhythmogenic drug use. Therefore, hydroxyzine should be used with caution in patients with risk factors for QT prolongation, congenital long QT syndrome, family history of long QT syndrome or other predisposing conditions, as well as myocardial infarction, uncompensated heart failure, and bradyarrhythmias.
hydrOXYzine Myocardial Infarction
Applies to: Myocardial Infarction
Hydroxyzine is contraindicated in patients with a QT prolonged interval. Cases of QT prolongation and Torsade de Pointes have been reported during postmarketing studies. Most of the cases reported occurred in patients with other risk factors for QT prolongation, such as preexisting heart disease, electrolyte imbalances or arrhythmogenic drug use. Therefore, hydroxyzine should be used with caution in patients with risk factors for QT prolongation, congenital long QT syndrome, family history of long QT syndrome or other predisposing conditions, as well as myocardial infarction, uncompensated heart failure, and bradyarrhythmias.
levomethadyl acetate Prematurity/Underweight in Infancy
Applies to: Prematurity / Underweight in Infancy
The use of narcotic (opioid) analgesic agents is contraindicated in premature infants. These agents may cross the immature blood-brain barrier to a greater extent than in adults, resulting in disproportionate respiratory depression.
levomethadyl acetate Pulmonary Impairment
Applies to: Pulmonary Impairment
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
levomethadyl acetate Respiratory Arrest
Applies to: Respiratory Arrest
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
levomethadyl acetate Shock
Applies to: Shock
Opiate agonists can induce vasodilation and significant hypotension, particularly when given in high dosages and/or by rapid intravenous administration. Opiate analgesics cause vasodilatation that may exacerbate hypotension and hypoperfusion and, therefore, are contraindicated in circulatory shock. At therapeutic analgesic dosages, ambulatory patients are more likely to experience dizziness and hypotension than patients who are confined to bed. However, orthostatic hypotension may occur in supine patients upon rising. Therapy with opiate agonists should be administered cautiously and initiated at reduced dosages in patients with hypovolemia, or a predisposition to hypotension. When given by intramuscular or subcutaneous administration, clinicians should also be aware that impaired perfusion in these patients may prevent complete absorption of the drug. With repeated injections, an excessive amount may be absorbed suddenly if normal circulation is reestablished.
hydrOXYzine Ventricular Arrhythmia
Applies to: Ventricular Arrhythmia
Hydroxyzine is contraindicated in patients with a QT prolonged interval. Cases of QT prolongation and Torsade de Pointes have been reported during postmarketing studies. Most of the cases reported occurred in patients with other risk factors for QT prolongation, such as preexisting heart disease, electrolyte imbalances or arrhythmogenic drug use. Therefore, hydroxyzine should be used with caution in patients with risk factors for QT prolongation, congenital long QT syndrome, family history of long QT syndrome or other predisposing conditions, as well as myocardial infarction, uncompensated heart failure, and bradyarrhythmias.
levomethadyl acetate Adrenal Insufficiency
Applies to: Adrenal Insufficiency
Patients with Addison's disease may have increased risk of respiratory depression and prolonged CNS depression associated with the use of narcotic (opioid) analgesic agents. Conversely, these agents may cause or potentiate adrenal insufficiency. Therapy with opioids should be administered cautiously and initiated at reduced dosages in patients with adrenocortical insufficiency. Subsequent doses should be titrated based on individual response rather than a fixed dosing schedule.
hydrOXYzine Asthma
Applies to: Asthma
It has been suggested that the anticholinergic effect of antihistamines may reduce the volume and cause thickening of bronchial secretions, resulting in obstruction of respiratory tract. Some manufacturers and clinicians recommend that therapy with antihistamines be administered cautiously in patients with asthma or chronic obstructive pulmonary disease.
levomethadyl acetate Biliary Obstruction
Applies to: Biliary Obstruction
Opioid agonists may cause spasm of the sphincter of Oddi, which may increase biliary tract pressure. Other opioid-induced effects may include a reduction in biliary and pancreatic secretions and transient elevations in serum amylase. Patients with biliary tract disease (including acute pancreatitis) should be regularly evaluated for worsening symptoms. Therapy with opioids should be administered cautiously in patients with biliary tract disease, gallbladder disease, or acute pancreatitis.
hydrOXYzine Cardiovascular Disease
Applies to: Cardiovascular Disease
Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.
hydrOXYzine Chronic Obstructive Pulmonary Disease
Applies to: Chronic Obstructive Pulmonary Disease
It has been suggested that the anticholinergic effect of antihistamines may reduce the volume and cause thickening of bronchial secretions, resulting in obstruction of respiratory tract. Some manufacturers and clinicians recommend that therapy with antihistamines be administered cautiously in patients with asthma or chronic obstructive pulmonary disease.
levomethadyl acetate Gallbladder Disease
Applies to: Gallbladder Disease
Opioid agonists may cause spasm of the sphincter of Oddi, which may increase biliary tract pressure. Other opioid-induced effects may include a reduction in biliary and pancreatic secretions and transient elevations in serum amylase. Patients with biliary tract disease (including acute pancreatitis) should be regularly evaluated for worsening symptoms. Therapy with opioids should be administered cautiously in patients with biliary tract disease, gallbladder disease, or acute pancreatitis.
hydrOXYzine Gastrointestinal Obstruction
Applies to: Gastrointestinal Obstruction
Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.
hydrOXYzine Glaucoma/Intraocular Hypertension
Applies to: Glaucoma / Intraocular Hypertension
Some hypnotic drugs can have an anticholinergic effect and should be used with caution in patients with glaucoma, and trouble urinating due to retention or enlarged prostate.
hydrOXYzine Glaucoma/Intraocular Hypertension
Applies to: Glaucoma / Intraocular Hypertension
Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.
hydrOXYzine Hyperthyroidism
Applies to: Hyperthyroidism
Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.
hydrOXYzine Hypotension
Applies to: Hypotension
Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.
hydrOXYzine Liver Disease
Applies to: Liver Disease
In general, anxiolytics, sedatives and hypnotics are extensively metabolized by the liver. Their plasma clearance may be decreased and their half-life prolonged in patients with impaired hepatic function. Therapy with these drugs should be administered cautiously in patients with liver disease (some are not recommended in severe liver impairment), and the dosage should be adjusted accordingly. Laboratory testing is recommended prior and during treatment.
hydrOXYzine Liver Disease
Applies to: Liver Disease
Some anxiolytics, sedatives and hypnotics are extensively metabolized by the liver, and excreted in the urine. Patients with impaired renal and/or hepatic function may be at greater risk for adverse effects, including central nervous system and respiratory depression, due to drug and metabolite accumulation. Therapy with these drugs should be administered cautiously in such patients, with careful dose selection usually starting at the low end of the dosing range.
levomethadyl acetate Liver Disease
Applies to: Liver Disease
Narcotic (opioid) analgesic agents are extensively metabolized by the liver, and several of them (e.g., codeine, hydrocodone, meperidine, methadone, morphine, propoxyphene) have active metabolites that are further converted to inactive substances. The serum concentrations of these agents and their metabolites may be increased and the half-lives prolonged in patients with impaired hepatic function. Therapy with opioids should be administered cautiously and initiated at reduced dosages in patients with liver disease. Subsequent doses should be titrated based on individual response rather than a fixed dosing schedule.
hydrOXYzine Liver Disease
Applies to: Liver Disease
Limited pharmacokinetic data are available for the older, first-generation antihistamines. Many appear to be primarily metabolized by the liver, and both parent drugs and metabolites are excreted in the urine. Patients with renal and/or liver disease may be at greater risk for adverse effects from antihistamines due to drug and metabolite accumulation. Therapy with antihistamines should be administered cautiously in such patients. Lower initial dosages may be appropriate.
levomethadyl acetate Pancreatitis
Applies to: Pancreatitis
Opioid agonists may cause spasm of the sphincter of Oddi, which may increase biliary tract pressure. Other opioid-induced effects may include a reduction in biliary and pancreatic secretions and transient elevations in serum amylase. Patients with biliary tract disease (including acute pancreatitis) should be regularly evaluated for worsening symptoms. Therapy with opioids should be administered cautiously in patients with biliary tract disease, gallbladder disease, or acute pancreatitis.
hydrOXYzine Renal Dysfunction
Applies to: Renal Dysfunction
Some anxiolytics, sedatives and hypnotics are extensively metabolized by the liver, and excreted in the urine. Patients with impaired renal and/or hepatic function may be at greater risk for adverse effects, including central nervous system and respiratory depression, due to drug and metabolite accumulation. Therapy with these drugs should be administered cautiously in such patients, with careful dose selection usually starting at the low end of the dosing range.
levomethadyl acetate Renal Dysfunction
Applies to: Renal Dysfunction
Although narcotic (opioid) analgesic agents are generally metabolized by the liver, renal impairment can alter the elimination of these agents and their metabolites (some of which are pharmacologically active), resulting in drug accumulation and increased risk of toxicity. Therapy with opioids should be administered cautiously and initiated at reduced dosages in patients with significantly impaired renal function. Subsequent doses should be titrated based on individual response rather than a fixed dosing schedule.
hydrOXYzine Renal Dysfunction
Applies to: Renal Dysfunction
Limited pharmacokinetic data are available for the older, first-generation antihistamines. Many appear to be primarily metabolized by the liver, and both parent drugs and metabolites are excreted in the urine. Patients with renal and/or liver disease may be at greater risk for adverse effects from antihistamines due to drug and metabolite accumulation. Therapy with antihistamines should be administered cautiously in such patients. Lower initial dosages may be appropriate.
levomethadyl acetate Seizures
Applies to: Seizures
Narcotic (opioid) analgesic agents may increase the frequency of seizures in patients with seizure disorders, may increase the risk of seizures occurring in other clinical settings associated with seizures, and, at higher dosages, have been reported to induce seizures in patients without history of seizures. Patients with history of seizure disorders should be regularly evaluated for worsened seizure control during therapy. Prolonged meperidine use may increase the risk of toxicity (e.g., seizures) from the accumulation of the active metabolite (normeperidine).
hydrOXYzine Urinary Retention
Applies to: Urinary Retention
Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.
hydrOXYzine Urinary Retention
Applies to: Urinary Retention
Some hypnotic drugs can have an anticholinergic effect and should be used with caution in patients with glaucoma, and trouble urinating due to retention or enlarged prostate.
levomethadyl acetate Urinary Retention
Applies to: Urinary Retention
Narcotic (opioid) analgesic agents may inhibit the urinary voiding reflex and increase the tone of the vesical sphincter in the bladder. Acute urinary retention requiring catheterization may occur, particularly in patients with prostatic hypertrophy or urethral stricture and in older adult patients. These agents may also decrease urine production via direct effects on the kidney and central stimulation of the release of vasopressin. Therapy with opioids should be administered cautiously in patients with or predisposed to urinary retention and/or oliguria. The effects on smooth muscle tone appear to be the most pronounced with morphine.
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
| Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
| Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
| Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
| No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.