Skip to main content

Drug Interactions between gepirone and Kisqali Femara Co-Pack

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

ribociclib gepirone

Applies to: Kisqali Femara Co-Pack (letrozole / ribociclib) and gepirone

ADJUST DOSE: Coadministration with moderate CYP450 3A4 inhibitors may increase the plasma concentrations of gepirone, which is primarily metabolized by the isoenzyme. When subjects who were at steady state on the moderate CYP450 3A4 inhibitor verapamil (80 mg three times daily) received a single dose of gepirone (18.2 mg), the maximum plasma concentration (Cmax) and systemic exposure (AUC) of gepirone increased by approximately 2.6-fold. The risk of adverse effects such as QT prolongation, serotonin syndrome, dizziness, nausea, insomnia, abdominal pain, and dyspepsia may be increased. The risk of QT prolongation in particular may be increased with concomitant use of moderate CYP450 3A4 inhibitors that are also able to prolong the QT interval (e.g., ciprofloxacin, crizotinib, erythromycin, fluconazole, ribociclib).

MANAGEMENT: When used in combination with a moderate CYP450 3A4 inhibitor, the manufacturer recommends a 50% reduction in the dose of gepirone. If the moderate CYP450 3A4 inhibitor also carries a risk of prolonging the QT interval, then obtaining more frequent electrocardiograms (ECGs) to monitor the QT interval is also advised. Patients should be counseled to seek immediate medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, syncope, palpitations, irregular heartbeat, and/or shortness of breath.

References (1)
  1. (2023) "Product Information. Exxua (gepirone)." Mission Pharmacal Company, 1
Moderate

letrozole ribociclib

Applies to: Kisqali Femara Co-Pack (letrozole / ribociclib) and Kisqali Femara Co-Pack (letrozole / ribociclib)

MONITOR: Coadministration with ribociclib may increase the plasma concentrations and pharmacologic effects of drugs that are substrates of CYP450 3A4. The proposed mechanism is decreased clearance due to ribociclib-mediated inhibition of CYP450 3A4 metabolism. In healthy study subjects, administration of midazolam, a sensitive CYP450 3A4 substrate, with multiple 400 mg daily doses of ribociclib increased the midazolam peak plasma concentration (Cmax) and systemic exposure (AUC) by 2.1-fold and 3.8-fold, respectively, compared to midazolam administered alone. When given at a clinically relevant dose of 600 mg daily, ribociclib is predicted to increase midazolam Cmax and AUC by 2.4-fold and 5.2-fold, respectively.

MANAGEMENT: Caution is advised when ribociclib is used concomitantly with drugs that undergo metabolism by CYP450 3A4, particularly those with a narrow therapeutic range. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever ribociclib is added to or withdrawn from therapy.

References (9)
  1. Zhou XJ, Zhou-Pan XR, Gauthier T, Placidi M, Maurel P, Rahmani R (1993) "Human liver microsomal cytochrome P450 3A isozymes mediated vindesine biotransformation. Metabolic drug interactions." Biochem Pharmacol, 45, p. 853-61
  2. Trivier JM, Libersa C, Belloc C, Lhermitte M (1993) "Amiodarone N-deethylation in human liver microsomes: involvement of cytochrome P450 3A enzymes (first report)." Life Sci, 52, pl91-6
  3. Rawden HC, Kokwaro GO, Ward SA, Edwards G (2000) "Relative contribution of cytochromes P-450 and flavin-containing monoxygenases to the metabolism of albendazole by human liver microsomes." Br J Clin Pharmacol, 49, p. 313-22
  4. DSouza DL, Levasseur LM, Nezamis J, Robbins DK, Simms L, Koch KM (2001) "Effect of alosetron on the pharmacokinetics of alprazolam." J Clin Pharmacol, 41, p. 452-4
  5. Katoh M, Nakajima M, Yamazaki H, Yokoi T (2001) "Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport." Eur J Pharm Sci, 12, p. 505-13
  6. Kane GC, Lipsky JJ (2000) "Drug-grapefruit juice interactions." Mayo Clin Proc, 75, p. 933-42
  7. Yu DK (1999) "The contribution of P-glycoprotein to pharmacokinetic drug-drug interactions." J Clin Pharmacol, 39, p. 1203-11
  8. Nagy J, Schipper HG, Koopmans RP, Butter JJ, van Boxtel CJ, Kager PA (2002) "Effect of grapefruit juice or cimetidine coadministration on albendazole bioavailability." Am J Trop Med Hyg, 66, p. 260-3
  9. (2017) "Product Information. Kisqali (ribociclib)." Novartis Pharmaceuticals

Drug and food interactions

Moderate

ribociclib food

Applies to: Kisqali Femara Co-Pack (letrozole / ribociclib)

GENERALLY AVOID: Pomegranates and grapefruit may increase the systemic exposure to ribociclib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in these fruits. Increased exposure to ribociclib may increase the risk of adverse effects such as infections, neutropenia, leukopenia, anemia, thrombocytopenia, anorexia, nausea, vomiting, diarrhea, stomatitis, alopecia, fatigue, headache, and abnormal liver function may be increased.

MANAGEMENT: Patients receiving ribociclib should avoid consumption of pomegranates or pomegranate juice and grapefruit or grapefruit juice during treatment.

References (1)
  1. (2017) "Product Information. Kisqali (ribociclib)." Novartis Pharmaceuticals
Moderate

gepirone food

Applies to: gepirone

GENERALLY AVOID: Grapefruit and/or grapefruit juice may increase the plasma concentrations and effects of gepirone. The proposed mechanism is inhibition of CYP450 3A4 mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. For example, when subjects who were at steady state on the strong CYP450 3A4 inhibitor ketoconazole (200 mg twice daily) received a single dose of gepirone (36.3 mg), the maximum plasma concentration (Cmax) and systemic exposure (AUC) of gepirone increased by approximately 5-fold. Similarly, when subjects who were at steady state on the moderate CYP450 3A4 inhibitor verapamil (80 mg three times daily) received a single dose of gepirone (18.2 mg), the maximum plasma concentration (Cmax) and systemic exposure (AUC) of gepirone increased by approximately 2.6-fold. In general, the effects of grapefruit products are concentration-, dose-, and preparation-dependent and can vary widely among both brands and individual patients. Some preparations have demonstrated strong CYP450 3A4 inhibition, while others have demonstrated moderate inhibition.

ADJUST DOSING INTERVAL: Food enhances the bioavailability of gepirone and its major active metabolites (3'-OH-gepirone and 1-PP). The magnitude of the effect is dependent on the fat content of the meal, but the systemic exposure of gepirone and its major metabolites was consistently higher under fed conditions as compared to the fasted state. The peak plasma concentration (Cmax) of gepirone after intake of a low-fat (about 200 calorie) breakfast was 27% higher, after a medium-fat (about 500 calorie) breakfast was 55% higher, and after a high-fat (about 850 calorie) breakfast was 62% higher than the Cmax achieved in the fasted state. Likewise, the systemic exposure (AUC) of gepirone was about 14% higher after a low-fat breakfast, 22% higher after a medium-fat breakfast, and 32% to 37% higher after a high-fat breakfast when compared to the AUC achieved in the fasted state. The effect of varying amounts of fat on the AUC and Cmax of 3'-OH-gepirone and 1-PP were similar to that of gepirone.

MANAGEMENT: Coadministration of gepirone with grapefruit products should be avoided. If grapefruit juice is consumed, monitoring for adverse effects (e.g., QT prolongation, serotonin syndrome, dizziness, nausea, insomnia, abdominal pain, and/or dyspepsia) should be considered. Gepirone should be taken orally with food at the approximately the same time each day. Tablets should be swallowed whole.

References (4)
  1. (2023) "Product Information. Exxua (gepirone)." Mission Pharmacal Company, 1
  2. FDA. U.S. Food and Drug Administration (2024) Grapefruit juice and some drugs don't mix. https://www.fda.gov/consumers/consumer-updates/grapefruit-juice-and-some-drugs-dont-mix
  3. Chen M, Zhou S, Fabriaga E, Zhang P, Zhou Q (2024) Food-drug interactions precipitated by fruit juices other than grapefruit juice: an update review. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326888/
  4. Kiani J, Imam SZ (2024) Medicinal importance of grapefruit juice and its interaction with various drugs. https://nutritionj.biomedcentral.com/articles/10.1186/1475-2891-6-33

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.