Drug Interactions between Fiorinal and imipramine
This report displays the potential drug interactions for the following 2 drugs:
- Fiorinal (aspirin/butalbital/caffeine)
- imipramine
Interactions between your drugs
aspirin imipramine
Applies to: Fiorinal (aspirin / butalbital / caffeine) and imipramine
MONITOR: Preliminary evidence suggests that aspirin may increase the plasma free concentration and pharmacologic effects of imipramine by displacing it from plasma protein binding sites. In 20 patients with endogenous depression given imipramine 150 mg/day for 5 days, administration of aspirin (500 mg every 12 hours for 2 days) decreased the plasma protein binding of imipramine from 84% to 72%. Additionally, the incidence of mild and severe adverse effects associated with imipramine increased nearly 60% and 150%, respectively. Other salicylates are expected to have similar effects due to their high affinity for plasma proteins.
MANAGEMENT: Pharmacologic response to imipramine should be monitored more closely whenever a salicylate is added to or withdrawn from therapy, and the imipramine dosage adjusted as necessary. Patients should be advised to notify their physician if they experience increased adverse effects of imipramine such as dry mouth, constipation, urinary retention, blurred vision, palpitations, and tachycardia.
References (1)
- Juarez-Olguin H, Jung-Cook H, Flores-Perez J, Asseff IL (2002) "Clinical Evidence of an Interaction Between Imipramine and Acetylsalicylic Acid on Protein Binding in Depressed Patients." Clin Neuropharmacol, 25, p. 32-36
imipramine butalbital
Applies to: imipramine and Fiorinal (aspirin / butalbital / caffeine)
MONITOR: Tricyclic antidepressants may counteract the anticonvulsive effects of barbiturates by lowering the seizure threshold. Barbiturates may decrease the serum levels and effects of tricyclic antidepressants by induction of hepatic metabolism. In addition, the respiratory-depressant effects of both agents may be increased due to additive pharmacologic effects.
MANAGEMENT: If the barbiturate is being taken for a seizure disorder, patients should be closely monitored for loss of seizure control. Dose adjustments may be required. Monitoring for clinical evidence of additive toxicity and for clinical and/or laboratory evidence of reduced antidepressant effect is also advisable.
References (5)
- Crocker J, Morton B (1969) "Tricyclic (antidepressant) drug toxicity." Clin Toxicol, 2, p. 397-402
- Burrows GD, Davies B (1971) "Antidepressants and barbiturates." Br Med J, 4, p. 113
- Silverman G, Braithwaite R (1972) "Interaction of benzodiazepines with tricyclic antidepressants." Br Med J, 4, p. 111
- Spina E, Avenoso A, Campo GM, Caputi AP, Perucca E (1996) "Phenobarbital induces the 2-hydroxylation of desipramine." Ther Drug Monit, 18, p. 60-4
- Garey KW, Amsden GW, Johns CA (1997) "Possible interaction between imipramine and butalbital." Pharmacotherapy, 17, p. 1041-2
aspirin caffeine
Applies to: Fiorinal (aspirin / butalbital / caffeine) and Fiorinal (aspirin / butalbital / caffeine)
One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.
References (1)
- Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6
Drug and food interactions
butalbital food
Applies to: Fiorinal (aspirin / butalbital / caffeine)
GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.
MANAGEMENT: The combination of ethanol and barbiturates should be avoided.
References (5)
- Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
- Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
- Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
- Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
- Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102
aspirin food
Applies to: Fiorinal (aspirin / butalbital / caffeine)
GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.
MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.
References (1)
- (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn
imipramine food
Applies to: imipramine
GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.
MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.
References (7)
- Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
- Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
- Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
- Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
- Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
imipramine food
Applies to: imipramine
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
caffeine food
Applies to: Fiorinal (aspirin / butalbital / caffeine)
The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.
References (2)
- (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
- Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR (1996) "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy, 16, p. 1046-52
aspirin food
Applies to: Fiorinal (aspirin / butalbital / caffeine)
One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.
References (1)
- Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.