Skip to main content

Drug Interactions between fexinidazole and Onxol

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

PACLitaxel fexinidazole

Applies to: Onxol (paclitaxel) and fexinidazole

MONITOR: Coadministration with inhibitors of CYP450 2C8 and/or 3A4 may increase the plasma concentrations of paclitaxel, which has been found in vitro to be a substrate of these isoenzymes. Formal clinical drug interaction studies have not been conducted. However, in a case report involving a 77-year-old woman with HER2-positive invasive ductal breast cancer on long-term amiodarone therapy, 4 cycles of paclitaxel (80 mg/m2 weekly) and trastuzumab led to development of increasing abdominal discomfort and skin lesions and a diagnosis of paclitaxel-induced skin toxicity. Switching to reduced dose docetaxel (100 mg or 75 mg/m2 weekly) led to the development of severe skin and mucosal toxicity, requiring hospitalization 8 days after the first docetaxel dose was administered. Analysis of two blood samples taken 9 and 10 days after docetaxel administration showed an approximately fivefold increase in its AUC as well as the presence of paclitaxel in unquantifiable levels, 20 and 21 days after it was last administered. The authors of this case study propose that, in addition to CYP450 3A4 inhibition, CYP450 2C8 and P-glycoprotein inhibition due to amiodarone may also contribute to the interaction.

MANAGEMENT: Clinicians should consider the potential for interaction with drugs that inhibit CYP450 2C8 and/or 3A4 and monitor for evidence of dose-related toxicities of paclitaxel during coadministration, including diarrhea, mucositis, myelosuppression, and peripheral neuropathy.

References

  1. Spencer CM, Faulds D (1994) "Paclitaxel. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer." Drugs, 48, p. 794-847
  2. Jamis-Dow CA, Klecker RW, Katki AG, Collins JM (1993) "Metabolism of Taxol by human liver microsomes and effect of inhibitors (Meeting abstract)." Proc Annu Meet Am Assoc Cancer Res, 34, a21981993
  3. (2001) "Product Information. Taxol (paclitaxel)." Bristol-Myers Squibb
  4. Bun SS, Ciccolini J, Bun H, Aubert C, Catalin J (2003) "Drug interactions of paclitaxel metabolism in human liver microsomes." J Chemother, 15, p. 266-74
  5. "Product Information. Abraxane (PACLitaxel protein-bound)." American Pharmaceutical Partners
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Bergmann TK, Filppula AM, Launiainen T, Nielsen F, Backman J, Brosen K (2015) "Neurotoxicity and low paclitaxel clearance associated with concomitant clopidogrel therapy in a 60 year old Caucasian woman with ovarian carcinoma." Br J Clin Pharmacol
  8. Starr SP, Hammann F, Gotta V, et al. (2016) "Pharmacokinetic interaction between taxanes and amiodarone leading to severe toxicity." Br J Clin Pharmacol, 450, p. 22-27
View all 8 references

Switch to consumer interaction data

Drug and food interactions

Moderate

PACLitaxel food

Applies to: Onxol (paclitaxel)

MONITOR: Coadministration with inhibitors of CYP450 3A4, such as grapefruit juice, may increase the plasma concentrations of paclitaxel, which is a substrate of the isoenzyme. Current data suggest that consumption of large quantities of grapefruit juice inhibit both intestinal and hepatic CYP450 3A4 due to certain compounds present in grapefruit. Specific data for paclitaxel are lacking; however, in a case report of a 52-year-old woman with esophageal squamous cell carcinoma receiving a twice weekly chemotherapy regimen including intravenous docetaxel (40 mg/m2) reported that docetaxel systemic exposure (AUC) increased by 65% compared with the AUC target of 1.96 mg*h/L and clearance decreased by 63%, with a 71% reduction in the patient's neutrophil count. In the absence of other CYP450 3A4 inhibitors, these effects were attributed to daily consumption of 250 mL of grapefruit juice, which the patient had been consuming for at least 3 months. Two weeks after the patient ceased the grapefruit juice, the docetaxel AUC was closer to the target value and the neutrophil count reduction was less than 35%. In addition, in a pharmacokinetic study consisting of 7 cancer patients, mean dose-normalized docetaxel AUC increased by 2.2-fold and clearance decreased by 49% when intravenous docetaxel was given at a reduced dosage of 10 mg/m2 in combination with the potent CYP450 3A4 inhibitor ketoconazole (200 mg orally once daily for 3 days) compared to docetaxel administered alone at 100 mg/m2.

MANAGEMENT: Caution is recommended if paclitaxel is to be used in combination with grapefruit and grapefruit juice. Patients should be closely monitored for the development of paclitaxel toxicity, including diarrhea, mucositis, myelosuppression, and peripheral neuropathy and dose adjustment considered per local treatment protocols.

References

  1. (2001) "Product Information. Taxotere (docetaxel)." Rhone Poulenc Rorer
  2. Aronson JK, Grahame-Smith DG (1981) "Clinical pharmacology: adverse drug interactions." Br Med J, 282, p. 288-91
  3. McInnes GT, Brodie MJ (1988) "Drug interactions that matter: a critical reappraisal." Drugs, 36, p. 83-110
  4. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  5. Yong WP, Wang LZ, Tham LS, et al. (2008) "A phase I study of docetaxel with ketoconazole modulation in patients with advanced cancers." Cancer Chemother Pharmacol, 62, p. 243-51
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Engels FK, Mathot RA, Loos WJ, van Schaik RH, Verweij J (2006) "Influence of high-dose ketoconazole on the pharmacokinetics of docetaxel." Cancer Biol Ther, 5, p. 833-9
  8. Valenzuela B, Rebollo J, Perez T, Brugarolas A, Perez-Ruixo JJ (2011) "Effect of grapefruit juice on the pharmacokinetics of docetaxel in cancer patients: a case report." Br J Clin Pharmacol
  9. Starr SP, Hammann F, Gotta V, et al. (2016) "Pharmacokinetic interaction between taxanes and amiodarone leading to severe toxicity." Br J Clin Pharmacol, 450, p. 22-27
View all 9 references

Switch to consumer interaction data

Moderate

fexinidazole food

Applies to: fexinidazole

GENERALLY AVOID: Use of alcohol or products containing alcohol during nitroimidazole therapy may result in a disulfiram-like reaction in some patients. There have been a few case reports involving metronidazole, although data overall are not convincing. The presumed mechanism is inhibition of aldehyde dehydrogenase (ALDH) by metronidazole in a manner similar to disulfiram. Following ingestion of alcohol, inhibition of ALDH results in increased concentrations of acetaldehyde, the accumulation of which can produce an unpleasant physiologic response referred to as the 'disulfiram reaction'. Symptoms include flushing, throbbing in head and neck, throbbing headache, respiratory difficulty, nausea, vomiting, sweating, thirst, chest pain, palpitation, dyspnea, hyperventilation, tachycardia, hypotension, syncope, weakness, vertigo, blurred vision, and confusion. Severe reactions may result in respiratory depression, cardiovascular collapse, arrhythmia, myocardial infarction, acute congestive heart failure, unconsciousness, convulsions, and death. However, some investigators have questioned the disulfiram-like properties of metronidazole. One study found neither elevations in blood acetaldehyde nor objective or subjective signs of a disulfiram-like reaction to ethanol in six subjects treated with metronidazole (200 mg three times a day for 5 days) compared to six subjects who received placebo.

GENERALLY AVOID: The potential exists for pharmacodynamic interactions and/or toxicities between fexinidazole and herbal medicines and supplements. In addition, grapefruit and grapefruit juice may, theoretically, increase the plasma concentrations of fexinidazole and the risk of adverse effects. The mechanism is decreased clearance of fexinidazole due to inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

ADJUST DOSING INTERVAL: Food significantly increases the oral absorption and bioavailability of fexinidazole. Compared with the fasted state, the systemic exposure (AUC) of fexinidazole and its metabolites (fexinidazole sulfoxide [M1], fexinidazole sulfone [M2]) were 4- to 5-fold higher following administration with food.

MANAGEMENT: To ensure maximal oral absorption, fexinidazole should be administered with food each day at about the same time of day (e.g., during or immediately after the main meal of the day). Coadministration of fexinidazole with grapefruit, grapefruit juice, or herbal medicines or supplements should be avoided. Because clear evidence is lacking concerning the safety of ethanol use during nitroimidazole therapy, patients should be apprised of the potential for interaction and instructed to avoid alcoholic beverages and products containing alcohol or propylene glycol while using oral, intravenous, or vaginal preparations of a nitroimidazole. Alcoholic beverages should not be consumed for at least 48 hours after completion of fexinidazole therapy.

References

  1. Giannini AJ, DeFrance DT (1983) "Metronidazole and alcohol: potential for combinative abuse." J Toxicol Clin Toxicol, 20, p. 509-15
  2. Alexander I (1985) "Alcohol-antabuse syndrome in patients receiving metronidazole during gynaecological treatment." Br J Clin Pract, 39, p. 292-3
  3. Harries DP, Teale KF, Sunderland G (1990) "Metronidazole and alcohol: potential problems." Scott Med J, 35, p. 179-80
  4. Edwards DL, Fink PC, Van Dyke PO (1986) "Disulfiram-like reaction associated with intravenous trimethoprim-sulfamethoxazole and metronidazole." Clin Pharm, 5, p. 999-1000
  5. (2002) "Product Information. Flagyl (metronidazole)." Searle
  6. Williams CS, Woodcock KR (2000) "Do ethanol and metronidazole interact to produce a disulfiram-like reaction?." Ann Pharmacother, 34, p. 255-7
  7. Visapaa JP, Tillonen JS, Kaihovaara PS, Salaspuro MP (2002) "Lack of disulfiram-like reaction with metronidazole and ethanol." Ann Pharmacother, 36, p. 971-4
  8. Krulewitch CJ (2003) "An unexpected adverse drug effect." J Midwifery Womens Health, 48, p. 67-8
  9. (2004) "Product Information. Tindamax (tinidazole)." Presutti Laboratories Inc
  10. (2021) "Product Information. Fexinidazole (fexinidazole)." sanofi-aventis
View all 10 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.