Skip to main content

Drug Interactions between Exubera and Xylocaine-MPF-Epinephrine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

EPINEPHrine insulin inhalation, rapid acting

Applies to: Xylocaine-MPF-Epinephrine (epinephrine / lidocaine) and Exubera (insulin inhalation, rapid acting)

ADJUST DOSING INTERVAL: Bronchodilators and other orally inhaled products may alter the absorption of inhaled human insulin. In nondiabetic subjects with mild asthma (n=36) and moderate asthma (n=31), administration of albuterol 30 minutes prior to inhaled human insulin resulted in a mean increase in insulin systemic exposure (AUC) and peak plasma concentration (Cmax) of 25% to 50% compared to administration of inhaled human insulin alone.

MONITOR: Systemic administration or systemic absorption of orally inhaled corticosteroids and sympathomimetic amines (bronchodilators) may result in diminished efficacy of insulin. These drugs may interfere with blood glucose control because they can cause hyperglycemia, glucose intolerance, new-onset diabetes mellitus, and/or exacerbation of preexisting diabetes.

MANAGEMENT: Consistent timing of dosing of other inhaled products relative to inhaled human insulin administration is recommended. Blood glucose should be monitored closely, and the insulin dose adjusted accordingly.

References

  1. Greenstone MA, Shaw AB "Alternate day corticosteroid causes alternate day hyperglycaemia." Postgrad Med J 63 (1987): 761-4
  2. Black DM, Filak AT "Hyperglycemia with non-insulin-dependent diabetes following intraarticular steroid injection." J Fam Pract 28 (1989): 462-3
  3. Gunnarsson R, Lundgren G, Magnusson G, Ost L, Groth CG "Steroid diabetes--a sign of overtreatment with steroids in the renal graft recipient?" Scand J Urol Nephrol Suppl 54 (1980): 135-8
  4. Ludvik B, Clodi M, Kautzky-Willer A, Capek M, Hartter E, Pacini G, Prager R "Effect of dexamethasone on insulin sensitivity, islet amyloid polypeptide and insulin secretion in humans." Diabetologia 36 (1993): 84-7
  5. "Product Information. EXUBERA (insulin inhalation, rapid acting)." Pfizer U.S. Pharmaceuticals Group (2006):
View all 5 references

Switch to consumer interaction data

Drug and food interactions

Moderate

lidocaine food

Applies to: Xylocaine-MPF-Epinephrine (epinephrine / lidocaine)

MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.

MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.

MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.

References

  1. Huet PM, LeLorier J "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther 28 (1980): 208-15
  2. "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc. (2024):
  3. "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation (2015):
  4. "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd (2022):
  5. "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd (2022):
  6. Isohanni MH, Neuvonen PJ, Olkkola KT "Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/" (2024):
  7. Isohanni MH, Neuvonen PJ, Olkkola KT "Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/" (2024):
View all 7 references

Switch to consumer interaction data

Moderate

insulin inhalation, rapid acting food

Applies to: Exubera (insulin inhalation, rapid acting)

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References

  1. Jerntorp P, Almer LO "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand 656 (1981): 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol 24 (1983): 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia 24 (1983): 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A "Interaction of ethanol and glipizide in humans." Diabetes Care 10 (1987): 683-6
  5. "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  6. "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM "The pharmacology of sulfonylureas." Am J Med 70 (1981): 361-72
  9. "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care 25(Suppl 1) (2002): S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
View all 10 references

Switch to consumer interaction data

Moderate

EPINEPHrine food

Applies to: Xylocaine-MPF-Epinephrine (epinephrine / lidocaine)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res 1 (1979): 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther 11 (1970): 656
  3. "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc PROD (2001):
  4. "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals PROD (2001):
  5. "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals PROD (2001):
  6. "Product Information. Focalin (dexmethylphenidate)." Mikart Inc (2001):
  7. "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company (2002):
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.