Skip to main content

Drug Interactions between Exaprin and methotrexate

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

methotrexate aspirin

Applies to: methotrexate and Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: Coadministration with nonsteroidal anti-inflammatory drugs (NSAIDs) including salicylates may increase the plasma concentrations and toxicities of methotrexate. The proposed mechanism is NSAID inhibition of the renal elimination of methotrexate and its metabolite, 7-hydroxymethotrexate, although data from pharmacokinetic studies are inconsistent and conflicting. Displacement of methotrexate binding to serum albumin by salicylates and various other NSAIDs may also play a secondary role. Unexpectedly severe and sometimes fatal bone marrow suppression, aplastic anemia, gastrointestinal toxicity, and nephrotoxicity have been reported during concomitant administration of methotrexate with NSAIDs. The risk is greatest in patients receiving high dosages of methotrexate and those with renal impairment. In clinical studies, methotrexate at dosages of 7.5 to 15 mg/week has been used without apparent problems in patients with rheumatoid arthritis who also received constant dosage regimens of NSAIDs. However, there have been occasional reports of stomatitis, pneumonitis, bone marrow toxicity, and fatality in patients receiving low-dose weekly methotrexate with daily NSAIDs.

MANAGEMENT: NSAIDs including salicylates should generally not be administered prior to or concomitantly with high dosages of methotrexate, such as those used to treat osteosarcoma. Caution should be exercised when NSAIDs are administered concomitantly with lower dosages of methotrexate. Close monitoring for signs and symptoms of bone marrow suppression, nephrotoxicity, and hepatotoxicity is recommended during treatment. Patients should be advised to contact their physician if they develop stomatitis, nausea, vomiting, diarrhea, rash, anorexia, jaundice, dark urine, dry cough, shortness of breath, and/or signs and symptoms of myelosuppression such as pallor, dizziness, fatigue, lethargy, fainting, easy bruising or bleeding, fever, chills, sore throat, body aches, and other influenza-like symptoms. Patients should also be counseled to avoid any other over-the-counter NSAID products.

References (16)
  1. Frenia ML, Long KS (1992) "Methotrexate and nonsteroidal antiinflamatory drug interactions." Ann Pharmacother, 26, p. 234-7
  2. Skeith KJ, Russell AS, Jamali F, Coates J, Friedman H (1990) "Lack of significant interaction between low dose methotrexate and ibuprofen or flurbiprofen in patients with arthritis." J Rheumatol, 17, p. 1008-10
  3. Maiche AG (1986) "Acute renal failure due to concomitant action of methotrexate and indomethacin." Lancet, 1, p. 1390
  4. Singh RR, Malaviya AN, Pandey JN, Guleria JS (1986) "Fatal interaction between methotrexate and naproxen." Lancet, 1, p. 1390
  5. Dupuis LL, Koren G, Shore A, Silverman ED, Laxer RM (1990) "Methotrexate-nonsteroidal antiinflammatory drug interaction in children with arthritis." J Rheumatol, 17, p. 1469-73
  6. Stewart CF, Fleming RA, Germain BF, et al. (1991) "Aspirin alters methotrexate disposition in rheumatoid arthritis patients." Arthritis Rheum, 34, p. 1514-20
  7. Stewart CF, Fleming RA, Arkin CR, Evans WE (1990) "Coadministration of naproxen and low-dose methotrexate in patients with rheumatoid arthritis." Clin Pharmacol Ther, 47, p. 540-6
  8. Liegler DG, Henderson ES, Hahn MA, Oliverio VT (1969) "The effect of organic acids on renal clearance of methotrexate in man." Clin Pharmacol Ther, 10, p. 849-57
  9. Ellison NM, Servi RJ (1985) "Acute renal failure and death following sequential intermediate-dose methotrexate and 5-FU: a possible adverse effect due to concomitant indomethacin administration." Cancer Treat Rep, 69, p. 342-3
  10. Kraus A, Alarcon-Segovia D (1991) "Low dose MTX and NSAID induced "mild" renal insufficiency and severe neutropenia." J Rheumatol, 18, p. 1274
  11. Dixon RL, Henderson ES, Rall DP (1965) "Plasma protein binding of methotrexate and its displacement by various drugs." Fed Proc, 24, p. 454
  12. Baker H (1970) "Intermittent high dose oral methotrexate therapy in psoriasis." Br J Dermatol, 82, p. 65-9
  13. Mandel MA (1976) "The synergistic effect of salicylates on methotrexate toxicity." Plast Reconstr Surg, 57, p. 733-7
  14. Taylor JR, Halprin KM (1977) "Effect of sodium salicylate and indomethacin on methotrexate-serum albumin binding." Arch Dermatol, 113, p. 588-91
  15. (2002) "Product Information. Methotrexate (methotrexate)." Lederle Laboratories
  16. Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, Brater DC (1992) "The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis." Eur J Clin Pharmacol, 42, p. 121-5
Major

methotrexate salicylamide

Applies to: methotrexate and Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

MONITOR CLOSELY: Coadministration with nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the plasma concentrations and toxicities of methotrexate. The proposed mechanism is NSAID inhibition of the renal elimination of methotrexate and its metabolite, 7-hydroxymethotrexate, although data from pharmacokinetic studies are inconsistent and conflicting. Displacement of methotrexate binding to serum albumin by certain NSAIDs may also play a secondary role. Unexpectedly severe and sometimes fatal bone marrow suppression, aplastic anemia, gastrointestinal toxicity, and nephrotoxicity have been reported during concomitant administration of methotrexate with NSAIDs. The risk is greatest in patients receiving high dosages of methotrexate and those with renal impairment. In clinical studies, methotrexate at dosages of 7.5 to 15 mg/week has been used without apparent problems in patients with rheumatoid arthritis who also received constant dosage regimens of NSAIDs. However, there have been occasional reports of stomatitis, pneumonitis, bone marrow toxicity, and fatality in patients receiving low-dose weekly methotrexate with daily NSAIDs.

MANAGEMENT: NSAIDs should generally not be administered prior to or concomitantly with high dosages of methotrexate, such as those used to treat osteosarcoma. Caution should be exercised when NSAIDs are administered concomitantly with lower dosages of methotrexate. Close monitoring for signs and symptoms of bone marrow suppression, nephrotoxicity, and hepatotoxicity is recommended during treatment. Patients should be advised to contact their physician if they develop stomatitis, nausea, vomiting, diarrhea, rash, anorexia, jaundice, dark urine, dry cough, shortness of breath, and/or signs and symptoms of myelosuppression such as pallor, dizziness, fatigue, lethargy, fainting, easy bruising or bleeding, fever, chills, sore throat, body aches, and other influenza-like symptoms. Patients should also be counseled to avoid any other over-the-counter NSAID products.

References (29)
  1. Skeith KJ, Russell AS, Jamali F, Coates J, Friedman H (1990) "Lack of significant interaction between low dose methotrexate and ibuprofen or flurbiprofen in patients with arthritis." J Rheumatol, 17, p. 1008-10
  2. Bloom EJ, Ignoffo RJ, Reis CA, Cadman E (1986) "Delayed clearance (CL) of methotrexate (MTX) associated with antibiotics and antiinflammatory agents." Clin Res, 34, a560
  3. Thyss A, Milano G, Kubar J, Namer M, Schneider M (1986) "Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen." Lancet, 1, p. 256-8
  4. Maiche AG (1986) "Acute renal failure due to concomitant action of methotrexate and indomethacin." Lancet, 1, p. 1390
  5. Singh RR, Malaviya AN, Pandey JN, Guleria JS (1986) "Fatal interaction between methotrexate and naproxen." Lancet, 1, p. 1390
  6. Ng HW, Macfarlane AW, Graham RM, Verbov JL (1987) "Near fatal drug interactions with methotrexate given for psoriasis." Br Med J (Clin Res Ed), 295, p. 752-3
  7. Dupuis LL, Koren G, Shore A, Silverman ED, Laxer RM (1990) "Methotrexate-nonsteroidal antiinflammatory drug interaction in children with arthritis." J Rheumatol, 17, p. 1469-73
  8. Frenia ML, Long KS (1992) "Methotrexate and nonsteroidal antiinflammatory drug interactions." Ann Pharmacother, 26, p. 234-7
  9. Stewart CF, Fleming RA, Germain BF, Seleznick MJ, Evans WE (1991) "Aspirin alters methotrexate disposition in rheumatoid arthritis patients." Arthritis Rheum, 34, p. 1514-20
  10. Stewart CF, Fleming RA, Arkin CR, Evans WE (1990) "Coadministration of naproxen and low-dose methotrexate in patients with rheumatoid arthritis." Clin Pharmacol Ther, 47, p. 540-6
  11. Mayall B, Poggi G, Parkin JD (1991) "Neutropenia due to low-dose methotrexate therapy for psoriasis and rheumatoid arthritis may be fatal." Med J Aust, 155, p. 480-4
  12. Ellison NM, Servi RJ (1985) "Acute renal failure and death following sequential intermediate-dose methotrexate and 5-FU: a possible adverse effect due to concomitant indomethacin administration." Cancer Treat Rep, 69, p. 342-3
  13. Kraus A, Alarcon-Segovia D (1991) "Low dose MTX and NSAID induced "mild" renal insufficiency and severe neutropenia." J Rheumatol, 18, p. 1274
  14. Adams JD, Hunter GA (1976) "Drug interaction in psoriasis." Australas J Dermatol, 17, p. 39-40
  15. Baker H (1970) "Intermittent high dose oral methotrexate therapy in psoriasis." Br J Dermatol, 82, p. 65-9
  16. Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, Brater DC (1992) "The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis." Eur J Clin Pharmacol, 42, p. 121-5
  17. Anaya JM, Fabre D, Bressolle F, Bologna C, Alric R, Cocciglio M, Dropsy R, Sany J (1994) "Effect of etodolac on methotrexate pharmacokinetics in patients with rheumatoid arthritis." J Rheumatol, 21, p. 203-8
  18. Tracy TS, Worster T, Bradley JD, Greene PK, Brater DC (1994) "Methotrexate disposition following concomitant administration of ketoprofen, piroxicam and flurbiprofen in patients with rheumatoid arthritis." Br J Clin Pharmacol, 37, p. 453-6
  19. Brouwers JRBJ, Desmet PAGM (1994) "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet, 27, p. 462-85
  20. Combe B, Edno L, Lafforgue P, Bologna C, Bernard JC, Acquaviva P, Sany J (1995) "Total and free methotrexate pharmacokinetics, with and without piroxicam, in rheumatoid arthritis patients." Br J Rheumatol, 34, p. 421-8
  21. Wallace CA, Smith AL, Sherry DD (1993) "Pilot investigation of naproxen/methotrexate interaction in patients with juvenile rheumatoid arthritis." J Rheumatol, 20, p. 1764-8
  22. Franck H, Rau R, Herborn G (1996) "Thrombocytopenia in patients with rheumatoid arthritis on long-term treatment with low dose methotrexate." Clin Rheumatol, 15, p. 163-7
  23. (2001) "Product Information. Arthrotec (diclofenac-misoprostol)." Searle
  24. Karim A, Tolbert DS, Hunt TL, Hubbard RC, Harper KM, Geis GS (1999) "Celecoxib, a specific COX-2 inhibitor, has no significant effect on methotrexate pharmacokinetics in patients with rheumatoid arthritis." J Rheumatol, 26, p. 2539-43
  25. Matheson AJ, Figgitt DP (2001) "Rofecoxib - A review of its use in the management of osteoarthritis, acute pain and rheumatoid arthritis." Drugs, 61, p. 833-65
  26. Schwartz JI, Agrawal NG, Wong PH, et al. (2001) "Lack of pharmacokinetic interaction between rofecoxib and methotrexate in rheumatoid arthritis patients." J Clin Pharmacol, 41, p. 1120-30
  27. Hartmann SN, Rordorf CM, Milosavljev S, et al. (2004) "Lumiracoxib does not affect methotrexate pharmacokinetics in rheumatoid arthritis patients." Ann Pharmacother, 38, p. 1582-7
  28. Vakily M, Amer F, Kukulka MJ, Andhivarothai N (2005) "Coadministration of lansoprazole and naproxen does not affect the pharmacokinetic profile of methotrexate in adult patients with rheumatoid arthritis." J Clin Pharmacol, 45, p. 1179-86
  29. EMEA. European Medicines Agency (2007) EPARs. European Union Public Assessment Reports. http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landingpage.jsp&mid
Moderate

acetaminophen methotrexate

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide) and methotrexate

GENERALLY AVOID: Coadministration of methotrexate with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. Methotrexate, especially at higher dosages or during prolonged treatment, has been associated with severe hepatotoxicity including acute hepatitis, chronic fibrosis, cirrhosis, and fatal liver failure.

MANAGEMENT: The risk of hepatic injury should be considered when methotrexate is used with other potentially hepatotoxic agents (e.g., acetaminophen; alcohol; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; ketolide and macrolide antibiotics; kinase inhibitors; minocycline; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; sulfonamides; tamoxifen; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; lipid-lowering medications such as fenofibrate, lomitapide, mipomersen, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice). Baseline and periodic monitoring of hepatic function is recommended, while liver biopsy may be warranted during long-term use of methotrexate. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, pale stools, and jaundice.

References (2)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. (2023) "Product Information. Methotrexate (methotrexate)." Hospira Inc
Moderate

methotrexate caffeine

Applies to: methotrexate and Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.

MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.

References (1)
  1. Nesher G, Mates M, Zevin S (2003) "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum, 48, p. 571-572
Moderate

aspirin salicylamide

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide) and Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

MONITOR: The combined use of low-dose or high-dose aspirin with other nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the potential for serious gastrointestinal (GI) toxicity, including inflammation, bleeding, ulceration, and perforation. Aspirin at anti-inflammatory dosages or higher may also decrease the plasma concentrations of many NSAIDs. The decreases have ranged from none or small (piroxicam, meloxicam, naproxen, tolmetin) to substantial (flurbiprofen, ibuprofen). However, the therapeutic response does not appear to be affected. Investigators theorize that aspirin may displace NSAIDs from plasma protein binding sites, resulting in increased concentration of unbound, or free, drug available for clearance. The increase in NSAID free fraction, and possibly some contributory anti-inflammatory effect from aspirin, may account for the lack of overall effect on therapeutic response.

MANAGEMENT: Caution is advised if aspirin, particularly at anti-inflammatory dosages, is used with other NSAIDs. Concomitant administration of NSAIDs is considered contraindicated or not recommended with aspirin at analgesic/anti-inflammatory dosages by many NSAID manufacturers. During concomitant therapy, patients should be advised to take the medications with food and to immediately report signs and symptoms of GI ulceration and bleeding such as abdominal pain, bloating, sudden dizziness or lightheadedness, nausea, vomiting, hematemesis, anorexia, and melena.

References (22)
  1. Furst DE, Sarkissian E, Blocka K, et al. (1987) "Serum concentrations of salicylate and naproxen during concurrent therapy in patients with rheumatoid arthritis." Arthritis Rheum, 30, p. 1157-61
  2. Abdel-Rahman MS, Reddi AS, Curro FA, Turkall RM, Kadry AM, Hansrote JA (1991) "Bioavailability of aspirin and salicylamide following oral co-administration in human volunteers." Can J Physiol Pharmacol, 69, p. 1436-42
  3. Gruber CM (1976) "Clinical pharmacology of fenoprofen: a review." J Rheumatol, 2, p. 8-17
  4. Cressman WA, Wortham GF, Plostnieks J (1976) "Absorption and excretion of tolemetin in man." Clin Pharmacol Ther, 19, p. 224-33
  5. Kwan KC, Breault GO, Davis RL, et al. (1978) "Effects of concomitant aspirin administration on the pharmacokinetics of indomethacin in man." J Pharmacokinet Biopharm, 6, p. 451-76
  6. Rubin A, Rodda BE, Warrick P, Gruber CM Jr, Ridolfo RS (1973) "Interactions of aspirin with nonsteroidal antiinflammatory drugs in man." Arthritis Rheum, 16, p. 635-45
  7. Brooks PM, Walker JJ, Bell MA, Buchanan WW, Rhymer AR (1975) "Indomethacin--aspirin interaction: a clinical appraisal." Br Med J, 3, p. 69-11
  8. Tempero KF, Cirillo VJ, Steelman SL (1977) "Diflunisal: a review of pharmacokinetic and pharmacodynamic properties, drug interactions, and special tolerability studies in humans." Br J Clin Pharmacol, 4, s31-6
  9. Willis JV, Kendall MJ, Jack DB (1980) "A study of the effect of aspirin on the pharmacokinetics of oral and intravenous diclofenac sodium." Eur J Clin Pharmacol, 18, p. 415-8
  10. Muller FO, Hundt HK, Muller DG (1977) "Pharmacokinetic and pharmacodynamic implications of long-term administration of non-steroidal anti-inflammatory agents." Int J Clin Pharmacol Biopharm, 15, p. 397-402
  11. Hobbs DC, Twomey TM (1979) "Piroxicam pharmacokinetics in man: aspirin and antacid interaction studies." J Clin Pharmacol, 19, p. 270-81
  12. Pawlotsky Y, Chales G, Grosbois B, Miane B, Bourel M (1978) "Comparative interaction of aspirin with indomethacin and sulindac in chronic rheumatic diseases." Eur J Rheumatol Inflamm, 1, p. 18-20
  13. Segre EJ, Chaplin M, Forchielli E, Runkel R, Sevelius H (1973) "Naproxen-aspirin interactions in man." Clin Pharmacol Ther, 15, p. 374-9
  14. Bird HA, Hill J, Leatham P, Wright V (1986) "A study to determine the clinical relevance of the pharmacokinetic interaction between aspirin and diclofenac." Agents Actions, 18, p. 447-9
  15. Brooks PM, Khong T (1977) "Flurbiprofen-aspirin interaction: a double-blind crossover study." Curr Med Res Opin, 5, p. 53-7
  16. Grennan DM, Ferry DG, Ashworth ME, Kenny RE, Mackinnnon M (1979) "The aspirin-ibuprofen interaction in rheumatoid arthritis." Br J Clin Pharmacol, 8, p. 497-503
  17. Williams RL, Upton RA, Buskin JN, Jones RM (1981) "Ketoprofen-aspirin interactions." Clin Pharmacol Ther, 30, p. 226-31
  18. Kaiser DG, Brooks CD, Lomen PL (1986) "Pharmacokinetics of flurbiprofen." Am J Med, 80, p. 10-5
  19. Kahn SB, Hubsher JA (1983) "Effects of oxaprozin alone or in combination with aspirin on hemostasis and plasma protein binding." J Clin Pharmacol, 23, p. 139-46
  20. (2001) "Product Information. Mobic (meloxicam)." Boehringer-Ingelheim
  21. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  22. Cerner Multum, Inc. "Australian Product Information."
Minor

aspirin caffeine

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide) and Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References (1)
  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6

Drug and food interactions

Major

acetaminophen food

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References (12)
  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
  4. Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
  6. Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
  7. Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
  8. (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
  9. Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
  10. Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
  11. Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
  12. Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
Moderate

methotrexate food

Applies to: methotrexate

MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.

MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.

References (1)
  1. Nesher G, Mates M, Zevin S (2003) "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum, 48, p. 571-572
Moderate

methotrexate food

Applies to: methotrexate

GENERALLY AVOID: Coadministration of methotrexate with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. Methotrexate, especially at higher dosages or during prolonged treatment, has been associated with severe hepatotoxicity including acute hepatitis, chronic fibrosis, cirrhosis, and fatal liver failure.

MANAGEMENT: The risk of hepatic injury should be considered when methotrexate is used with other potentially hepatotoxic agents (e.g., acetaminophen; alcohol; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; ketolide and macrolide antibiotics; kinase inhibitors; minocycline; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; sulfonamides; tamoxifen; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; lipid-lowering medications such as fenofibrate, lomitapide, mipomersen, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice). Baseline and periodic monitoring of hepatic function is recommended, while liver biopsy may be warranted during long-term use of methotrexate. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, pale stools, and jaundice.

References (2)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. (2023) "Product Information. Methotrexate (methotrexate)." Hospira Inc
Moderate

aspirin food

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References (1)
  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn
Moderate

salicylamide food

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References (1)
  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn
Moderate

methotrexate food

Applies to: methotrexate

MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.

MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.

References (1)
  1. Nesher G, Mates M, Zevin S (2003) "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum, 48, p. 571-572
Moderate

acetaminophen food

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.

MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.

References (4)
  1. (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
  2. jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
  3. Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
  4. Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Minor

caffeine food

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References (2)
  1. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR (1996) "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy, 16, p. 1046-52
Minor

aspirin food

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References (1)
  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.