Skip to main content

Drug Interactions between Erythrocin Lactobionate and mipomersen

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

erythromycin mipomersen

Applies to: Erythrocin Lactobionate (erythromycin) and mipomersen

MONITOR CLOSELY: Coadministration of mipomersen with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. Mipomersen can cause elevations in serum transaminases and hepatic steatosis. In a premarketing clinical trial, 12% (4/34) of patients treated with mipomersen had at least one elevation in alanine aminotransferase (ALT) 3 times the upper limit of normal (ULN) or greater, and 9% (3/34) had at least one elevation in ALT 5 times ULN or greater, compared to 0% of the 17 patients treated with placebo. There were no concomitant clinically meaningful elevations of total bilirubin, international normalized ratio (INR), or partial thromboplastin time (PTT). Mipomersen also increases hepatic fat, with or without concomitant increases in transaminases. In clinical trials of patients with heterozygous familial hypercholesterolemia and hyperlipidemia, the median absolute increase in hepatic fat was 10% after 26 weeks of treatment, from 0% at baseline, measured by magnetic resonance imaging. The long-term consequences of hepatic steatosis associated with mipomersen therapy are unknown. Hepatic steatosis may be a risk factor for progressive liver disease, including steatohepatitis and cirrhosis.

MANAGEMENT: Caution is advised if mipomersen is used with other potentially hepatotoxic agents (e.g., acetaminophen; alcohol; amiodarone; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; kinase inhibitors; methotrexate; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; tamoxifen; tetracyclines; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; other lipid-lowering medications such as fenofibrate, lomitapide, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice). Mipomersen has not been studied with other LDL-lowering agents that can also increase hepatic fat, thus concomitant use is not recommended. Patients treated with mipomersen should have serum ALT, AST, alkaline phosphatase, and total bilirubin measured prior to initiation of treatment and regularly during treatment in accordance with the product labeling, and the dosing adjusted or interrupted as necessary. Since alcohol may increase levels of hepatic fat and induce or exacerbate liver injury, the manufacturer recommends that patients taking mipomersen not consume more than one alcoholic drink per day. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, malaise, right upper quadrant pain, dark urine, pale stools, and jaundice.

References

  1. "Product Information. Kynamro (mipomersen)." Genzyme Corporation (2013):

Switch to consumer interaction data

Drug and food interactions

Major

mipomersen food

Applies to: mipomersen

GENERALLY AVOID: Coadministration with alcohol may increase the risk of hepatotoxicity associated with the use of mipomersen. Mipomersen can cause elevations in serum transaminases and hepatic steatosis. In a premarketing clinical trial, 12% (4/34) of patients treated with mipomersen had at least one elevation in alanine aminotransferase (ALT) 3 times the upper limit of normal (ULN) or greater, and 9% (3/34) had at least one elevation in ALT 5 times ULN or greater, compared to 0% of the 17 patients treated with placebo. There were no concomitant clinically meaningful elevations of total bilirubin, international normalized ratio (INR), or partial thromboplastin time (PTT). Mipomersen also increases hepatic fat, with or without concomitant increases in transaminases. In clinical trials of patients with heterozygous familial hypercholesterolemia and hyperlipidemia, the median absolute increase in hepatic fat was 10% after 26 weeks of treatment, from 0% at baseline, measured by magnetic resonance imaging. The long-term consequences of hepatic steatosis associated with mipomersen therapy are unknown. Hepatic steatosis may be a risk factor for progressive liver disease, including steatohepatitis and cirrhosis.

MANAGEMENT: Since alcohol may increase levels of hepatic fat and induce or exacerbate liver injury, the manufacturer recommends that patients taking mipomersen not consume more than one alcoholic drink per day.

References

  1. "Product Information. Kynamro (mipomersen)." Genzyme Corporation (2013):

Switch to consumer interaction data

Moderate

erythromycin food

Applies to: Erythrocin Lactobionate (erythromycin)

ADJUST DOSING INTERVAL: Food may variably affect the bioavailability of different oral formulations and salt forms of erythromycin. The individual product package labeling should be consulted regarding the appropriate time of administration in relation to food ingestion. Grapefruit juice may increase the plasma concentrations of orally administered erythromycin. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In an open-label, crossover study consisting of six healthy subjects, the coadministration with double-strength grapefruit juice increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of a single dose of erythromycin (400 mg) by 52% and 49%, respectively, compared to water. The half-life was not affected. The clinical significance of this potential interaction is unknown.

MANAGEMENT: In general, optimal serum levels are achieved when erythromycin is taken in the fasting state, one-half to two hours before meals. However, some erythromycin products may be taken without regard to meals.

References

  1. Welling PG, Huang H, Hewitt PF, Lyons LL "Bioavailability of erythromycin stearate: influence of food and fluid volume." J Pharm Sci 67 (1978): 764-6
  2. Welling PG, Elliott RL, Pitterle ME, et al. "Plasma levels following single and repeated doses of erythromycin estolate and erythromycin stearate." J Pharm Sci 68 (1979): 150-5
  3. Welling PG "Influence of food and diet on gastrointestinal drug absorption: a review." J Pharmacokinet Biopharm 5 (1977): 291-334
  4. Coyne TC, Shum S, Chun AH, Jeansonne L, Shirkey HC "Bioavailability of erythromycin ethylsuccinate in pediatric patients." J Clin Pharmacol 18 (1978): 194-202
  5. Malmborg AS "Effect of food on absorption of erythromycin. A study of two derivatives, the stearate and the base." J Antimicrob Chemother 5 (1979): 591-9
  6. Randinitis EJ, Sedman AJ, Welling PG, Kinkel AW "Effect of a high-fat meal on the bioavailability of a polymer-coated erythromycin particle tablet formulation." J Clin Pharmacol 29 (1989): 79-84
  7. Kanazawa S, Ohkubo T, Sugawara K "The effects of grapefruit juice on the pharmacokinetics of erythromycin." Eur J Clin Pharmacol 56 (2001): 799-803
View all 7 references

Switch to consumer interaction data

Minor

erythromycin food

Applies to: Erythrocin Lactobionate (erythromycin)

Ethanol, when combined with erythromycin, may delay absorption and therefore the clinical effects of the antibiotic. The mechanism appears to be due to slowed gastric emptying by ethanol. Data is available only for erythromycin ethylsuccinate. Patients should be advised to avoid ethanol while taking erythromycin salts.

References

  1. Morasso MI, Chavez J, Gai MN, Arancibia A "Influence of alcohol consumption on erythromycin ethylsuccinate kinetics." Int J Clin Pharmacol 28 (1990): 426-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.