Drug Interactions between encorafenib and Fioricet
This report displays the potential drug interactions for the following 2 drugs:
- encorafenib
- Fioricet (acetaminophen/butalbital/caffeine)
Interactions between your drugs
acetaminophen butalbital
Applies to: Fioricet (acetaminophen / butalbital / caffeine) and Fioricet (acetaminophen / butalbital / caffeine)
MONITOR: Barbiturates may increase the hepatotoxic potential of acetaminophen and decrease its therapeutic effects. The mechanism may be related to accelerated CYP450 metabolism of acetaminophen with consequent increase in hepatotoxic metabolites. This interaction is of greatest concern in cases of acetaminophen overdose.
MANAGEMENT: Monitoring for altered efficacy and safety is recommended. Prolonged use or high doses of acetaminophen should be avoided by patients on barbiturate therapy.
References (4)
- Pirotte JH (1984) "Apparent potentiation by phenobarbital of hepatotoxicity from small doses of acetaminophen." Ann Intern Med, 101, p. 403
- Douidar SM, Ahmed AE (1987) "A novel mechanism for the enhancement of acetaminophen hepatotoxicity by phenobarbital." J Pharmacol Exp Ther, 240, p. 578-83
- Wright N, Prescott LF (1973) "Potentiation by previous drug therapy of hepatotoxicity following paracetamol overdose." Scott Med J, 18, p. 56-8
- Bock KW, Wiltfang J, Blume R, Ullrich D, Bircher J (1987) "Paracetamol as a test drug to determine glucuronide formation in man: effects of inducers and of smoking." Eur J Clin Pharmacol, 31, p. 677-83
acetaminophen encorafenib
Applies to: Fioricet (acetaminophen / butalbital / caffeine) and encorafenib
MONITOR: Coadministration with encorafenib may increase the plasma concentrations of drugs that are substrates of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic cation transporter (OCT2), organic anion transporter (OAT1, OAT3), organic anion transporting polypeptide (OATP1B1, OATP1B3), or uridine diphosphate glucuronosyltransferase (UGT) 1A1. In in vivo studies, encorafenib has been shown to be an inhibitor of OATP1B1, 1B3, and BCRP. In vitro studies have demonstrated it to be an inhibitor of OCT2, OAT1, OAT3, and P-gp at expected clinical concentrations as well as a potent, reversible inhibitor of UGT1A1. Administration of a single dose of rosuvastatin, an OATP1B1, OATP1B3 and BCRP substrate, after repeated administration of encorafenib 450 mg once daily and binimetinib 45 mg twice daily, resulted in increased systemic exposure (AUC) and peak plasma concentration (Cmax) of rosuvastatin by approximately 1.6 fold and 2.7 fold respectively.
MANAGEMENT: Caution is advised if encorafenib must be used concomitantly with drugs that are substrates of the affected transporters or UGT1A1, particularly those with a narrow therapeutic range. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever encorafenib is added to or withdrawn from therapy.
References (3)
- (2023) "Product Information. Braftovi (encorafenib)." Array BioPharma Inc.
- (2024) "Product Information. Braftovi (encorafenib)." Pierre Fabre Ltd
- (2023) "Product Information. Braftovi (encorafenib)." Pierre Fabre Australia Pty Limited
butalbital encorafenib
Applies to: Fioricet (acetaminophen / butalbital / caffeine) and encorafenib
MONITOR: Coadministration with inducers of CYP450 3A4 may decrease the plasma concentrations of encorafenib, which is primarily metabolized by the isoenzyme. The extent to which CYP450 3A4 inducers may affect encorafenib exposure has not been studied. In clinical trials, steady-state encorafenib exposures were lower than encorafenib exposures after the first dose, suggesting CYP450 3A4 auto-induction.
MANAGEMENT: The potential for diminished pharmacologic effects of encorafenib should be considered during coadministration with CYP450 3A4 inducers. Alternative treatments or a dose adjustment of encorafenib may be required if an interaction is suspected.
References (1)
- (2018) "Product Information. Braftovi (encorafenib)." Array BioPharma Inc.
Drug and food interactions
encorafenib food
Applies to: encorafenib
GENERALLY AVOID: Coadministration with potent or moderate inhibitors of CYP450 3A4 may significantly increase the plasma concentrations of encorafenib, which is primarily metabolized by the isoenzyme. When a single 50 mg dose of encorafenib (equivalent to 0.1 times the recommended dose) was administered with posaconazole, a potent CYP450 3A4 inhibitor, encorafenib peak plasma concentration (Cmax) increased by 68% and systemic exposure (AUC) increased by 3-fold. When the same dose of encorafenib was administered with diltiazem, a moderate CYP450 3A4 inhibitor, encorafenib Cmax increased by 45% and AUC increased by 2-fold. Increased exposure to encorafenib may increase the risk of serious and life-threatening adverse effects such as hemorrhage, uveitis, QT prolongation, hepatotoxicity, dermatologic reactions, and new malignancies.
MANAGEMENT: Concomitant use of encorafenib with grapefruit or grapefruit juice should generally be avoided. If coadministration is required, the manufacturer recommends reducing the encorafenib dose to one-third of the dose used prior to addition of a potent CYP450 3A4 inhibitor or one-half of the dose used prior to addition of a moderate CYP450 3A4 inhibitor. After the inhibitor has been discontinued for 3 to 5 elimination half-lives, the encorafenib dose that was taken prior to initiating the inhibitor may be resumed.
References (1)
- (2018) "Product Information. Braftovi (encorafenib)." Array BioPharma Inc.
acetaminophen food
Applies to: Fioricet (acetaminophen / butalbital / caffeine)
GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.
MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).
References (12)
- Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
- O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
- Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
- Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
- McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
- Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
- Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
- (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
- Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
- Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
butalbital food
Applies to: Fioricet (acetaminophen / butalbital / caffeine)
GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.
MANAGEMENT: The combination of ethanol and barbiturates should be avoided.
References (5)
- Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
- Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
- Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
- Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
- Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102
acetaminophen food
Applies to: Fioricet (acetaminophen / butalbital / caffeine)
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
caffeine food
Applies to: Fioricet (acetaminophen / butalbital / caffeine)
The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.
References (2)
- (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
- Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR (1996) "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy, 16, p. 1046-52
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.