Skip to main content

Drug Interactions between enalapril / felodipine and lithium

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

enalapril lithium

Applies to: enalapril / felodipine and lithium

MONITOR CLOSELY: Coadministration with angiotensin converting enzyme (ACE) inhibitors may increase serum lithium concentrations and the risk for lithium toxicity. Several mechanisms may be involved, one of which is reduced renal lithium clearance due to natriuresis secondary to the inhibition of aldosterone and angiotensin II by ACE inhibitors. The combination may also cause renal dysfunction secondary to volume depletion during chronic therapy, which can further impair lithium clearance. The interaction was suspected in cases of lithium toxicity that occurred up to several weeks after the initiation of ACE inhibitor therapy. A retrospective study of 20 patients also found that addition of an ACE inhibitor to stable lithium therapy resulted in a mean 26% decrease in lithium clearance and a 35% increase in steady-state serum lithium concentrations. The average decline in lithium clearance was less in patients under 50 years of age than in older patients (13% vs. 31%). Four of the patients also demonstrated symptoms consistent with lithium toxicity and required dosage reduction or drug discontinuation. In contrast, a pharmacokinetic study found no significant effect of enalapril (5 mg twice a day for 10 days) on the steady-state serum lithium levels of 9 healthy volunteers receiving lithium 450 mg every 12 hours. Thus, it appears the interaction may not be completely predictable and may depend on factors such as dosages of the drugs, duration of therapy, age, and underlying medical conditions such as congestive heart failure or renal impairment. In addition, the interaction may be exacerbated by sodium restriction, dehydration, or concomitant use of diuretics or nonsteroidal anti-inflammatory drugs (NSAIDs).

MANAGEMENT: Given the narrow therapeutic index of lithium, caution is advised during coadministration with ACE inhibitors, particularly in the elderly or patients with other risk factors (e.g., sodium restriction, renal impairment, congestive heart failure, dehydration, concomitant use of diuretics or NSAIDs). Pharmacologic response and serum lithium levels should be monitored more closely whenever an ACE inhibitor is added to or withdrawn from therapy, and the lithium dosage adjusted as necessary. Empiric reductions of both drugs may be appropriate during initial therapy. Renal function should also be monitored regularly. Patients should be advised to seek medical attention if they experience potential signs and symptoms of lithium toxicity such as drowsiness, dizziness, confusion, muscle weakness, vomiting, diarrhea, polydipsia, polyuria, tinnitus, tremor, ataxia, and blurred vision.

References

  1. Correa FJ, Eiser AR "Angiotensin-converting enzyme inhibitors and lithium toxicity." Am J Med 93 (1992): 108-9
  2. Simon G "Combination angiotensin converting enzyme inhibitor/lithium therapy contraindicated in renal disease." Am J Med 85 (1988): 893-4
  3. DasGupta K, Jefferson JW, Kobak KA, Greist JH "The effect of enalapril on serum lithium levels in healthy men." J Clin Psychiatry 53 (1992): 398-400
  4. Douste-Blazy P, Rostin M, Livarek B, et al. "Angiotensin converting enzyme inhibitors and lithium treatment." Lancet 1 (1986): 1448
  5. Griffin JH, Hahn SM "Lisinopril-induced lithium toxicity." Drug Intell Clin Pharm 25 (1991): 101
  6. Navis GJ, de Jong PE, de Zeeuw D "Volume homeostasis, angiotensin converting enzyme inhibition, and lithium therapy." Am J Med 86 (1989): 621
  7. Baldwin CM, Safferman AZ "A case of lisinopril-induced lithium toxicity." DICP 24 (1990): 946-7
  8. "Product Information. Eskalith (lithium)." SmithKline Beecham PROD (2002):
  9. Lehmann K, Ritz E "Angiotensin-converting enzyme inhibitors may cause renal dysfunction in patients on long-term lithium treatment." Am J Kidney Dis 25 (1995): 82-7
  10. Finley PR, Warner MD, Peabody CA "Clinical relevance of drug interactions with lithium." Clin Pharmacokinet 29 (1995): 172-91
  11. Finley PR, Obrien JG, Coleman RW "Lithium and angiotensin-converting enzyme inhibitors: evaluation of a potential interaction." J Clin Psychopharmacol 16 (1996): 68-71
  12. Shionoiri H "Pharmacokinetic drug interactions with ACE inhibitors." Clin Pharmacokinet 25 (1993): 20-58
  13. Alderman CP, Lindsay KS "Increased serum lithium concentration secondary to treatment with tiaprofenic acid and fosinopril." Ann Pharmacother 30 (1996): 1411-3
  14. Vipond AJ, Bakewell S, Telford R, Nicholls AJ "Lithium toxicity." Anaesthesia 51 (1996): 1156-8
View all 14 references

Switch to consumer interaction data

Moderate

lithium felodipine

Applies to: lithium and enalapril / felodipine

MONITOR: Several case reports have suggested that the combination of lithium and calcium channel blockers may cause neurotoxicity and psychiatric effects such as psychosis. The mechanism is unknown. Data have been conflicting. Cases have been reported for diltiazem and verapamil.

MANAGEMENT: Patients who must take both drugs should be closely monitored for adverse neurologic and psychiatric effects. Patients should be advised to notify their physician if they experience symptoms of possible lithium toxicity such as drowsiness, dizziness, confusion, ataxia, vomiting, diarrhea, thirst, blurry vision, tinnitus, or tremor.

References

  1. Valdiserri EV "A possible interaction between lithium and diltiazem: case report." J Clin Psychiatry 46 (1985): 540-1
  2. Binder EF, Cayabyab L, Ritchie DJ, Birge SJ "Diltiazem-induced psychosis and a possible diltiazem-lithium interaction." Arch Intern Med 151 (1991): 373-4
  3. "Product Information. Eskalith (lithium)." SmithKline Beecham PROD (2002):

Switch to consumer interaction data

Minor

enalapril felodipine

Applies to: enalapril / felodipine and enalapril / felodipine

Calcium channel blockers and angiotensin converting enzyme (ACE) inhibitors may have additive hypotensive effects. While these drugs are often safely used together, careful monitoring of the systemic blood pressure is recommended during coadministration, especially during the first one to three weeks of therapy.

References

  1. Kaplan NM "Amlodipine in the treatment of hypertension." Postgrad Med J 67 Suppl 5 (1991): s15-9
  2. DeQuattro V "Comparison of benazepril and other antihypertensive agents alone and in combination with the diuretic hydrochlorothiazide." Clin Cardiol 14 (1991): iv28-32;
  3. Sun JX, Cipriano A, Chan K, John VA "Pharmacokinetic interaction study between benazepril and amlodipine in healthy subjects." Eur J Clin Pharmacol 47 (1994): 285-9
  4. Di Somma S, et al. "Antihypertensive effects of verapamil, captopril and their combination at rest and during dynamic exercise." Arzneimittelforschung 42 (1992): 103
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Moderate

enalapril food

Applies to: enalapril / felodipine

GENERALLY AVOID: Moderate-to-high dietary intake of potassium can cause hyperkalemia in some patients who are using angiotensin converting enzyme (ACE) inhibitors. In some cases, affected patients were using a potassium-rich salt substitute. ACE inhibitors can promote hyperkalemia through inhibition of the renin-aldosterone-angiotensin (RAA) system.

MANAGEMENT: It is recommended that patients who are taking ACE inhibitors be advised to avoid moderately high or high potassium dietary intake. Particular attention should be paid to the potassium content of salt substitutes.

References

  1. "Product Information. Vasotec (enalapril)." Merck & Co., Inc PROD (2002):
  2. Good CB, McDermott L "Diet and serum potassium in patients on ACE inhibitors." JAMA 274 (1995): 538
  3. Ray K, Dorman S, Watson R "Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction." J Hum Hypertens 13 (1999): 717-20

Switch to consumer interaction data

Moderate

lithium food

Applies to: lithium

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology 15 (1986): 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc. (1990):
  3. "Product Information. Fycompa (perampanel)." Eisai Inc (2012):
  4. "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc (2015):
View all 4 references

Switch to consumer interaction data

Moderate

felodipine food

Applies to: enalapril / felodipine

GENERALLY AVOID: The consumption of grapefruit juice may be associated with significantly increased plasma concentrations of some calcium channel blockers (CCBs) when they are administered orally. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. The interaction has been reported with the dihydropyridine CCBs (in roughly decreasing order of magnitude) felodipine, nisoldipine, nifedipine, and nimodipine, often with a high degree of interindividual variability. Grapefruit juice caused more than twofold increases in felodipine, nifedipine, and nisoldipine AUCs.

MANAGEMENT: The manufacturers of nifedipine and nisoldipine recommend avoiding grapefruit juice. Patients treated orally with other calcium channel blockers should be advised to avoid consumption of large amounts of grapefruits and grapefruit juice to prevent any undue fluctuations in serum drug levels. Increased effects on blood pressure may persist for up to 4 days after the consumption of grapefruit juice. Monitoring for calcium channel blocker adverse effects (e.g., headache, hypotension, syncope, tachycardia, edema) is recommended.

References

  1. Edgar B, Bailey D, Bergstrand R, Johnsson G, Regardh CG "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics of felodipine--and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. "Product Information. Plendil (felodipine)." Merck & Co., Inc PROD (2002):
  3. "Product Information. Procardia (nifedipine)." Pfizer U.S. Pharmaceuticals PROD (2002):
  4. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  5. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  8. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  9. "Product Information. Sular (nisoldipine)." Astra-Zeneca Pharmaceuticals PROD (2001):
  10. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  11. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  12. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  13. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  14. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  15. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  16. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  17. Ho PC, Ghose K, Saville D, Wanwimolruk S "Effect of grapefruit juice on pharmacokinetics and pharmacodynamics of verapamil enantiomers in healthy volunteers." Eur J Clin Pharmacol 56 (2000): 693-8
  18. Fuhr U, Muller-Peltzer H, Kern R, et al. "Effects of grapefruit juice and smoking on verapamil concentrations in steady state." Eur J Clin Pharmacol 58 (2002): 45-53
  19. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
View all 19 references

Switch to consumer interaction data

Moderate

enalapril food

Applies to: enalapril / felodipine

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol 11 (1991): 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med 101 (1984): 498-9
  3. Feder R "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry 52 (1991): 139
  4. Ellison JM, Milofsky JE, Ely E "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry 51 (1990): 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit 23 (2001): 435-40
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. Pacher P, Kecskemeti V "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des 10 (2004): 2463-75
  8. Andrews C, Pinner G "Postural hypotension induced by paroxetine." BMJ 316 (1998): 595
View all 8 references

Switch to consumer interaction data

Moderate

felodipine food

Applies to: enalapril / felodipine

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol 11 (1991): 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med 101 (1984): 498-9
  3. Feder R "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry 52 (1991): 139
  4. Ellison JM, Milofsky JE, Ely E "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry 51 (1990): 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit 23 (2001): 435-40
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. Pacher P, Kecskemeti V "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des 10 (2004): 2463-75
  8. Andrews C, Pinner G "Postural hypotension induced by paroxetine." BMJ 316 (1998): 595
View all 8 references

Switch to consumer interaction data

Moderate

felodipine food

Applies to: enalapril / felodipine

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med 3 (1985): 334-6
  2. Moller IW "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth 59 (1987): 522-6
  3. Oszko MA, Klutman NE "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm 6 (1987): 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol 67 (1991): 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy 10 (1990): 247
  6. Woie L, Storstein L "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J 2 (1981): 239-42
  7. Morris DL, Goldschlager N "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA 249 (1983): 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol 27 (1987): 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M "Calcium gluconate in severe verapamil intoxication." N Engl J Med 330 (1994): 718-20
  10. Bar-Or D, Gasiel Y "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed) 282 (1981): 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med 8 (1982): 55-7
  12. McMillan R "Management of acute severe verapamil intoxication." J Emerg Med 6 (1988): 193-6
  13. Perkins CM "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J 2 (1978): 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol 17 (1980): 395-400
View all 14 references

Switch to consumer interaction data

Moderate

lithium food

Applies to: lithium

MONITOR: One study has suggested that caffeine withdrawal may significantly increase blood lithium levels. The mechanism may be involve reversal of a caffeine-induced increase in renal lithium excretion.

MANAGEMENT: When caffeine is eliminated from the diet of lithium-treated patients, caution should be exercised. When caffeine consumption is decreased, close observation for evidence of lithium toxicity and worsening of the psychiatric disorder is recommended. Patients should be advised to notify their physician if they experience symptoms of possible lithium toxicity such as drowsiness, dizziness, weakness, ataxia, tremor, vomiting, diarrhea, thirst, blurry vision, tinnitus, or increased urination.

References

  1. Mester R, Toren P, Mizrachi I, Wolmer L, Karni N, Weizman A "Caffeine withdrawal increases lithium blood levels." Biol Psychiatry 37 (1995): 348-50

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.