Skip to main content

Drug Interactions between Elixophyllin GG and Phenytoin Sodium, Extended Release

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

theophylline phenytoin

Applies to: Elixophyllin GG (guaifenesin / theophylline) and Phenytoin Sodium, Extended Release (phenytoin)

MONITOR: Phenytoin has been reported to increase the clearance of theophylline by 40% to 50%, presumably by enhancing the hepatic CYP450 metabolism of theophylline. Also, coadministration of theophylline has been reported to lower serum phenytoin concentrations. Other hydantoins and hepatically metabolized methylxanthines may also interact.

MANAGEMENT: Management consists of monitoring clinical response and serum concentrations of both drugs and adjusting dosages as necessary. Patients should be advised to report loss of seizure control or worsening of respiratory symptoms to their physician.

References

  1. Upton RA "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet 20 (1991): 66-80
  2. Miller M, Cosgriff J, Kwong T, Morken DA "Influence of phenytoin on theophylline clearance." Clin Pharmacol Ther 35 (1984): 666-9
  3. Crowley JJ, Cusack BJ, Jue SG, et al. "Cigarette smoking and theophylline metabolism: effects of phenytoin." Clin Pharmacol Ther 42 (1987): 334-40
  4. Sklar SJ, Wagner "Enhanced theophylline clearance secondary to phenytoin therapy." Drug Intell Clin Pharm 19 (1985): 34-6
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Moderate

theophylline food

Applies to: Elixophyllin GG (guaifenesin / theophylline)

GENERALLY AVOID: Coadministration with caffeine may increase the serum concentrations of theophylline. The proposed mechanism involves competitive inhibition of theophylline metabolism via CYP450 1A2, as well as metabolic conversion of caffeine to theophylline in vivo and saturation of theophylline metabolism at higher serum concentrations. In six healthy male volunteers (all smokers), serum concentrations of theophylline (administered as aminophylline 400 mg single oral dose) were significantly higher following consumption of caffeine (2 to 7 cups of instant coffee over 24 hours, equivalent to approximately 120 to 630 mg of caffeine) than after caffeine deprivation for 48 hours. Caffeine consumption also increased the apparent elimination half-life of theophylline by an average of 32% and reduced its total body clearance by 23%. In another study, steady-state concentration and area under the concentration-time curve of theophylline (1200 mg intravenously over 24 hours) increased by 23% and 40%, respectively, in eight healthy volunteers following administration of caffeine (300 mg orally three times a day).

MANAGEMENT: Given the narrow therapeutic index of theophylline, patients should limit or avoid significant fluctuations in their intake of pharmacologic as well as dietary caffeine.

ADJUST DOSING INTERVAL: Administration of theophylline with continuous enteral nutrition may reduce the serum levels or the rate of absorption of theophylline. The mechanism has not been reported. In one case, theophylline levels decreased by 53% in a patient receiving continuous nasogastric tube feedings and occurred with both theophylline tablet and liquid formulations, but not with intravenous aminophylline.

MANAGEMENT: When administered to patients receiving continuous enteral nutrition , some experts recommend that the tube feeding should be interrupted for at least 1 hour before and 1 hour after the dose of theophylline is given; rapid-release formulations are preferable, and theophylline levels should be monitored.

References

  1. Jonkman JH, Sollie FA, Sauter R, Steinijans VW "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther 49 (1991): 248-55
  2. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol 44 (1993): 295-8
  3. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm 66 (2009): 1438-67

Switch to consumer interaction data

Moderate

phenytoin food

Applies to: Phenytoin Sodium, Extended Release (phenytoin)

ADJUST DOSING INTERVAL: Phenytoin bioavailability may decrease to subtherapeutic levels when the suspension is given concomitantly with enteral feedings. The mechanism may be related to phenytoin binding to substances in the enteral formula (e.g., calcium, protein) and/or binding to the tube lumen. Data have been conflicting and some studies have reported no changes in phenytoin levels, while others have reported significant reductions.

MONITOR: Acute consumption of alcohol may increase plasma phenytoin levels. Chronic consumption of alcohol may decrease plasma phenytoin levels. The mechanism of this interaction is related to induction of phenytoin metabolism by ethanol during chronic administration. Other hydantoin derivatives may be similarly affected by ethanol.

MANAGEMENT: Some experts have recommended interrupting the feeding for 2 hours before and after the phenytoin dose, giving the phenytoin suspension diluted in water, and flushing the tube with water after administration; however, this method may not entirely avoid the interaction and is not always clinically feasible. Patients should be closely monitored for clinical and laboratory evidence of altered phenytoin efficacy and levels upon initiation and discontinuation of enteral feedings. Dosage adjustments or intravenous administration may be required until therapeutic serum levels are obtained. In addition, patients receiving phenytoin therapy should be warned about the interaction between phenytoin and ethanol and they should be advised to notify their physician if they experience worsening of seizure control or symptoms of toxicity, including drowsiness, visual disturbances, change in mental status, nausea, or ataxia.

References

  1. Sandor P, Sellers EM, Dumbrell M, Khouw V "Effect of short- and long-term alcohol use on phenytoin kinetics in chronic alcoholics." Clin Pharmacol Ther 30 (1981): 390-7
  2. Holtz L, Milton J, Sturek JK "Compatibility of medications with enteral feedings." JPEN J Parenter Enteral Nutr 11 (1987): 183-6
  3. Sellers EM, Holloway MR "Drug kinetics and alcohol ingestion." Clin Pharmacokinet 3 (1978): 440-52
  4. "Product Information. Dilantin (phenytoin)." Parke-Davis PROD (2001):
  5. Doak KK, Haas CE, Dunnigan KJ, et al. "Bioavailability of phenytoin acid and phenytoin sodium with enteral feedings." Pharmacotherapy 18 (1998): 637-45
  6. Rodman DP, Stevenson TL, Ray TR "Phenytoin malabsorption after jejunostomy tube delivery." Pharmacotherapy 15 (1995): 801-5
  7. Au Yeung SC, Ensom MH "Phenytoin and enteral feedings: does evidence support an interaction?" Ann Pharmacother 34 (2000): 896-905
  8. Ozuna J, Friel P "Effect of enteral tube feeding on serum phenytoin levels." J Neurosurg Nurs 16 (1984): 289-91
  9. Faraji B, Yu PP "Serum phenytoin levels of patients on gastrostomy tube feeding." J Neurosci Nurs 30 (1998): 55-9
  10. Marvel ME, Bertino JS "Comparative effects of an elemental and a complex enteral feeding formulation on the absorption of phenytoin suspension." JPEN J Parenter Enteral Nutr 15 (1991): 316-8
  11. Fleisher D, Sheth N, Kou JH "Phenytoin interaction with enteral feedings administered through nasogastric tubes." JPEN J Parenter Enteral Nutr 14 (1990): 513-6
  12. Haley CJ, Nelson J "Phenytoin-enteral feeding interaction." DICP 23 (1989): 796-8
  13. Guidry JR, Eastwood TF, Curry SC "Phenytoin absorption in volunteers receiving selected enteral feedings." West J Med 150 (1989): 659-61
  14. Krueger KA, Garnett WR, Comstock TJ, Fitzsimmons WE, Karnes HT, Pellock JM "Effect of two administration schedules of an enteral nutrient formula on phenytoin bioavailability." Epilepsia 28 (1987): 706-12
  15. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  16. Cerner Multum, Inc. "Australian Product Information." O 0
View all 16 references

Switch to consumer interaction data

Moderate

theophylline food

Applies to: Elixophyllin GG (guaifenesin / theophylline)

GENERALLY AVOID: Coadministration with caffeine may increase the serum concentrations of theophylline. The proposed mechanism involves competitive inhibition of theophylline metabolism via CYP450 1A2, as well as metabolic conversion of caffeine to theophylline in vivo and saturation of theophylline metabolism at higher serum concentrations. In six healthy male volunteers (all smokers), serum concentrations of theophylline (administered as aminophylline 400 mg single oral dose) were significantly higher following consumption of caffeine (2 to 7 cups of instant coffee over 24 hours, equivalent to approximately 120 to 630 mg of caffeine) than after caffeine deprivation for 48 hours. Caffeine consumption also increased the apparent elimination half-life of theophylline by an average of 32% and reduced its total body clearance by 23%. In another study, steady-state concentration and area under the concentration-time curve of theophylline (1200 mg intravenously over 24 hours) increased by 23% and 40%, respectively, in eight healthy volunteers following administration of caffeine (300 mg orally three times a day).

MANAGEMENT: Given the narrow therapeutic index of theophylline, patients should limit or avoid significant fluctuations in their intake of pharmacologic as well as dietary caffeine.

References

  1. Jonkman JH, Sollie FA, Sauter R, Steinijans VW "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther 49 (1991): 248-55
  2. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol 44 (1993): 295-8

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.