Drug Interactions between Dristan Cold Multi Symptom Formula and hydromorphone
This report displays the potential drug interactions for the following 2 drugs:
- Dristan Cold Multi Symptom Formula (acetaminophen/chlorpheniramine/phenylephrine)
- hydromorphone
Interactions between your drugs
chlorpheniramine HYDROmorphone
Applies to: Dristan Cold Multi Symptom Formula (acetaminophen / chlorpheniramine / phenylephrine) and hydromorphone
MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.
MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (36)
- Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
- Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
- Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
- Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
- Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
- MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
- Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
- Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
- Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
- Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
- Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
- Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
- Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
- Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
- "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
- Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
- Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
- Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
- (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
- (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
- (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
- (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
- (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
- (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
- Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
- (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
- (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
- Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
- Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
- (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
- (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
Drug and food/lifestyle interactions
HYDROmorphone food/lifestyle
Applies to: hydromorphone
GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including hydromorphone. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.
GENERALLY AVOID: Consumption of alcohol while taking sustained-release formulations of hydromorphone may cause rapid release of the drug, resulting in high systemic levels of hydromorphone that may be potentially lethal even in opioid-tolerant patients. Alcohol appears to disrupt the extended release mechanism, causing 'dose-dumping' into the bloodstream. In 48 healthy volunteers, coadministration of a 12 mg dose of sustained-release hydromorphone with 240 mL of 40% (80 proof) alcohol resulted in a mean peak hydromorphone concentration (Cmax) approximately six times greater than when taken with water. One subject had a 16-fold increase in hydromorphone Cmax with 40% alcohol compared to water. In some subjects, coadministration with 8 ounces of 4% alcohol (equivalent to 2/3 of a typical serving of beer) resulted in almost twice the hydromorphone Cmax than when coadministered with water. The effect of alcohol was more pronounced in a fasted state.
MANAGEMENT: Patients taking sustained-release formulations of hydromorphone should not consume alcohol or use medications that contain alcohol on days of hydromorphone dosing. In general, potent narcotics such as hydromorphone should not be combined with alcohol.
References (3)
- Levine B, Saady J, Fierro M, Valentour J (1984) "A hydromorphone and ethanol fatality." J Forensic Sci, 29, p. 655-9
- (2001) "Product Information. Dilaudid (hydromorphone)." Knoll Pharmaceutical Company
- FDA. U.S. Food and Drug Administration (2005) Healthcare Professional Sheet. FDA Alert [07/2005]: alcohol-palladone interaction. http://www.fda.gov/medwatch/SAFETY/2005/safety05.htm#Palladone
acetaminophen food/lifestyle
Applies to: Dristan Cold Multi Symptom Formula (acetaminophen / chlorpheniramine / phenylephrine)
GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.
MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).
References (12)
- Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
- O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
- Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
- Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
- McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
- Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
- Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
- (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
- Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
- Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
chlorpheniramine food/lifestyle
Applies to: Dristan Cold Multi Symptom Formula (acetaminophen / chlorpheniramine / phenylephrine)
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.
MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (4)
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
phenylephrine food/lifestyle
Applies to: Dristan Cold Multi Symptom Formula (acetaminophen / chlorpheniramine / phenylephrine)
MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.
MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.
References (7)
- Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
- Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
- (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
- (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
- (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
- (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
- (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
acetaminophen food/lifestyle
Applies to: Dristan Cold Multi Symptom Formula (acetaminophen / chlorpheniramine / phenylephrine)
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Disease interactions
HYDROmorphone Acute Alcohol Intoxication
Applies to: Acute Alcohol Intoxication
The use of opiate agonists is contraindicated in patients with acute alcohol intoxication exhibiting depressed vital signs. The central nervous system depressant effects of opiate agonists may be additive with those of alcohol. Severe respiratory depression and death may occur. Therapy with opiate agonists should be administered cautiously in patients who might be prone to acute alcohol intake.
acetaminophen Alcoholism
Applies to: Alcoholism
Chronic alcohol abusers may be at increased risk of hepatotoxicity during treatment with acetaminophen (APAP). Severe liver injury, including cases of acute liver failure resulting in liver transplant and death, has been reported in patients using acetaminophen. Therapy with acetaminophen should be administered cautiously, if at all, in patients who consume three or more alcoholic drinks a day. In general, patients should avoid drinking alcohol while taking acetaminophen-containing medications. Patients should be warned not to exceed the maximum recommended total daily dosage of acetaminophen (4 g/day in adults and children 12 years of age or older), and to read all prescription and over-the-counter medication labels to ensure they are not taking multiple acetaminophen-containing products, or check with a healthcare professional if they are unsure. They should also be advised to seek medical attention if they experience signs and symptoms of liver injury such as fever, rash, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, and jaundice.
HYDROmorphone Alcoholism
Applies to: Alcoholism
Opiate agonists have the potential to cause dependence and abuse. Tolerance as well as physical and psychological dependence can develop after prolonged use. Abrupt cessation, reduction in dosage, or administration of an opiate antagonist such as naloxone may precipitate withdrawal symptoms. In patients who have developed tolerance to an opiate agonist, overdosage can still produce respiratory depression and death, and cross-tolerance usually will occur with other agents in the class. Addiction-prone individuals, such as those with a history of alcohol or substance abuse, should be under careful surveillance or medical supervision when treated with opiate agonists. It may be prudent to refrain from dispensing large quantities of medication to these patients. After prolonged use or if dependency is suspected, withdrawal of opiate therapy should be undertaken gradually using a dosage-tapering schedule.
HYDROmorphone Altered Consciousness
Applies to: Altered Consciousness
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
HYDROmorphone Asphyxia
Applies to: Asphyxia
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
HYDROmorphone Brain/Intracranial Tumor
Applies to: Brain / Intracranial Tumor
The hypoventilation associated with administration of opiate agonists, particularly by the intravenous route, can induce cerebral hypoxia and vasodilatation with resultant increase in intracranial pressure. Opiate agonists should not be used in patients with suspected or known head injury or increased intracranial pressure. Also, clinicians treating such patients should be aware that opiate agonists may interfere with the evaluation of CNS function, especially with respect to consciousness levels, respiratory status, and pupillary changes.
HYDROmorphone Brain/Intracranial Tumor
Applies to: Brain / Intracranial Tumor
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
phenylephrine Cardiovascular Disease
Applies to: Cardiovascular Disease
Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.
HYDROmorphone Cerebral Vascular Disorder
Applies to: Cerebral Vascular Disorder
The hypoventilation associated with administration of opiate agonists, particularly by the intravenous route, can induce cerebral hypoxia and vasodilatation with resultant increase in intracranial pressure. Opiate agonists should not be used in patients with suspected or known head injury or increased intracranial pressure. Also, clinicians treating such patients should be aware that opiate agonists may interfere with the evaluation of CNS function, especially with respect to consciousness levels, respiratory status, and pupillary changes.
HYDROmorphone Cerebral Vascular Disorder
Applies to: Cerebral Vascular Disorder
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
phenylephrine Cerebrovascular Insufficiency
Applies to: Cerebrovascular Insufficiency
Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.
HYDROmorphone Constipation
Applies to: Constipation
Narcotic (opioid) analgesic agents increase smooth muscle tone in the gastrointestinal tract and decrease peristalsis, which can lead to elevated intraluminal pressure, spasm, and constipation following prolonged use. In patients with severe or acute inflammatory bowel disease, the decrease in colonic motility may induce toxic megacolon. Therapy with opioids should be administered cautiously in patients with gastrointestinal obstruction, constipation, inflammatory bowel disease, or recent gastrointestinal tract surgery. Gastrointestinal effects appear to be the most pronounced with morphine.
acetaminophen Dehydration
Applies to: Dehydration
Acetaminophen is contraindicated in patients with severe hepatic impairment or severe active liver disease. Patients with hepatic impairment may be at increased risk of toxicity. Severe liver injury, including cases of acute liver failure and death, have been reported in patients using this drug. Clinical monitoring of hepatic function is recommended. Caution is advised if using acetaminophen in patients with chronic malnutrition or severe hypovolemia. Instruct patients to avoid drinking alcohol while taking acetaminophen-containing medications. Patients should be warned not to exceed the maximum recommended total daily dosage of acetaminophen (4 g/day in adults and children 12 years of age or older), and to read all prescription and over-the-counter medication labels to ensure they are not taking multiple acetaminophen-containing products, or check with a healthcare professional if they are unsure.
HYDROmorphone Dehydration
Applies to: Dehydration
Opiate agonists can induce vasodilation and significant hypotension, particularly when given in high dosages and/or by rapid intravenous administration. Opiate analgesics cause vasodilatation that may exacerbate hypotension and hypoperfusion and, therefore, are contraindicated in circulatory shock. At therapeutic analgesic dosages, ambulatory patients are more likely to experience dizziness and hypotension than patients who are confined to bed. However, orthostatic hypotension may occur in supine patients upon rising. Therapy with opiate agonists should be administered cautiously and initiated at reduced dosages in patients with hypovolemia, or a predisposition to hypotension. When given by intramuscular or subcutaneous administration, clinicians should also be aware that impaired perfusion in these patients may prevent complete absorption of the drug. With repeated injections, an excessive amount may be absorbed suddenly if normal circulation is reestablished.
HYDROmorphone Drug Abuse/Dependence
Applies to: Drug Abuse / Dependence
Opiate agonists have the potential to cause dependence and abuse. Tolerance as well as physical and psychological dependence can develop after prolonged use. Abrupt cessation, reduction in dosage, or administration of an opiate antagonist such as naloxone may precipitate withdrawal symptoms. In patients who have developed tolerance to an opiate agonist, overdosage can still produce respiratory depression and death, and cross-tolerance usually will occur with other agents in the class. Addiction-prone individuals, such as those with a history of alcohol or substance abuse, should be under careful surveillance or medical supervision when treated with opiate agonists. It may be prudent to refrain from dispensing large quantities of medication to these patients. After prolonged use or if dependency is suspected, withdrawal of opiate therapy should be undertaken gradually using a dosage-tapering schedule.
HYDROmorphone Gastrointestinal Obstruction
Applies to: Gastrointestinal Obstruction
Opioid analgesics are contraindicated in patients with known or suspected gastrointestinal obstruction, including paralytic ileus.
HYDROmorphone Gastrointestinal Obstruction
Applies to: Gastrointestinal Obstruction
Narcotic (opioid) analgesic agents increase smooth muscle tone in the gastrointestinal tract and decrease peristalsis, which can lead to elevated intraluminal pressure, spasm, and constipation following prolonged use. In patients with severe or acute inflammatory bowel disease, the decrease in colonic motility may induce toxic megacolon. Therapy with opioids should be administered cautiously in patients with gastrointestinal obstruction, constipation, inflammatory bowel disease, or recent gastrointestinal tract surgery. Gastrointestinal effects appear to be the most pronounced with morphine.
HYDROmorphone Head Injury
Applies to: Head Injury
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
HYDROmorphone Head Injury
Applies to: Head Injury
The hypoventilation associated with administration of opiate agonists, particularly by the intravenous route, can induce cerebral hypoxia and vasodilatation with resultant increase in intracranial pressure. Opiate agonists should not be used in patients with suspected or known head injury or increased intracranial pressure. Also, clinicians treating such patients should be aware that opiate agonists may interfere with the evaluation of CNS function, especially with respect to consciousness levels, respiratory status, and pupillary changes.
phenylephrine Hyperthyroidism
Applies to: Hyperthyroidism
Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.
HYDROmorphone Hypotension
Applies to: Hypotension
Opiate agonists can induce vasodilation and significant hypotension, particularly when given in high dosages and/or by rapid intravenous administration. Opiate analgesics cause vasodilatation that may exacerbate hypotension and hypoperfusion and, therefore, are contraindicated in circulatory shock. At therapeutic analgesic dosages, ambulatory patients are more likely to experience dizziness and hypotension than patients who are confined to bed. However, orthostatic hypotension may occur in supine patients upon rising. Therapy with opiate agonists should be administered cautiously and initiated at reduced dosages in patients with hypovolemia, or a predisposition to hypotension. When given by intramuscular or subcutaneous administration, clinicians should also be aware that impaired perfusion in these patients may prevent complete absorption of the drug. With repeated injections, an excessive amount may be absorbed suddenly if normal circulation is reestablished.
HYDROmorphone Infectious Diarrhea/Enterocolitis/Gastroenteritis
Applies to: Infectious Diarrhea / Enterocolitis / Gastroenteritis
Narcotic (opioid) analgesic agents may prolong and/or worsen diarrhea associated with organisms that invade the intestinal mucosa, such as toxigenic Escherichia coli, Salmonella, Shigella, and pseudomembranous colitis due to broad-spectrum antibiotics. These agents decrease gastrointestinal motility, which may delay the excretion of infective gastroenteric organisms and/or their toxins. Other symptoms and complications such as fever, shedding of organisms, and extraintestinal illness may also be increased or prolonged. Therapy with opioids should be avoided or administered cautiously in patients with infectious diarrhea, particularly that due to pseudomembranous enterocolitis or enterotoxin-producing bacteria or if accompanied by high fever, pus, or blood in the stool.
HYDROmorphone Inflammatory Bowel Disease
Applies to: Inflammatory Bowel Disease
Narcotic (opioid) analgesic agents increase smooth muscle tone in the gastrointestinal tract and decrease peristalsis, which can lead to elevated intraluminal pressure, spasm, and constipation following prolonged use. In patients with severe or acute inflammatory bowel disease, the decrease in colonic motility may induce toxic megacolon. Therapy with opioids should be administered cautiously in patients with gastrointestinal obstruction, constipation, inflammatory bowel disease, or recent gastrointestinal tract surgery. Gastrointestinal effects appear to be the most pronounced with morphine.
HYDROmorphone Intestinal Anastomoses
Applies to: Intestinal Anastomoses
Narcotic (opioid) analgesic agents increase smooth muscle tone in the gastrointestinal tract and decrease peristalsis, which can lead to elevated intraluminal pressure, spasm, and constipation following prolonged use. In patients with severe or acute inflammatory bowel disease, the decrease in colonic motility may induce toxic megacolon. Therapy with opioids should be administered cautiously in patients with gastrointestinal obstruction, constipation, inflammatory bowel disease, or recent gastrointestinal tract surgery. Gastrointestinal effects appear to be the most pronounced with morphine.
acetaminophen Liver Disease
Applies to: Liver Disease
Acetaminophen is contraindicated in patients with severe hepatic impairment or severe active liver disease. Patients with hepatic impairment may be at increased risk of toxicity. Severe liver injury, including cases of acute liver failure and death, have been reported in patients using this drug. Clinical monitoring of hepatic function is recommended. Caution is advised if using acetaminophen in patients with chronic malnutrition or severe hypovolemia. Instruct patients to avoid drinking alcohol while taking acetaminophen-containing medications. Patients should be warned not to exceed the maximum recommended total daily dosage of acetaminophen (4 g/day in adults and children 12 years of age or older), and to read all prescription and over-the-counter medication labels to ensure they are not taking multiple acetaminophen-containing products, or check with a healthcare professional if they are unsure.
acetaminophen Malnourished
Applies to: Malnourished
Acetaminophen is contraindicated in patients with severe hepatic impairment or severe active liver disease. Patients with hepatic impairment may be at increased risk of toxicity. Severe liver injury, including cases of acute liver failure and death, have been reported in patients using this drug. Clinical monitoring of hepatic function is recommended. Caution is advised if using acetaminophen in patients with chronic malnutrition or severe hypovolemia. Instruct patients to avoid drinking alcohol while taking acetaminophen-containing medications. Patients should be warned not to exceed the maximum recommended total daily dosage of acetaminophen (4 g/day in adults and children 12 years of age or older), and to read all prescription and over-the-counter medication labels to ensure they are not taking multiple acetaminophen-containing products, or check with a healthcare professional if they are unsure.
phenylephrine Pheochromocytoma
Applies to: Pheochromocytoma
Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.
HYDROmorphone Prematurity/Underweight in Infancy
Applies to: Prematurity / Underweight in Infancy
The use of narcotic (opioid) analgesic agents is contraindicated in premature infants. These agents may cross the immature blood-brain barrier to a greater extent than in adults, resulting in disproportionate respiratory depression.
HYDROmorphone Pulmonary Impairment
Applies to: Pulmonary Impairment
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
HYDROmorphone Respiratory Arrest
Applies to: Respiratory Arrest
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
HYDROmorphone Shock
Applies to: Shock
Opiate agonists can induce vasodilation and significant hypotension, particularly when given in high dosages and/or by rapid intravenous administration. Opiate analgesics cause vasodilatation that may exacerbate hypotension and hypoperfusion and, therefore, are contraindicated in circulatory shock. At therapeutic analgesic dosages, ambulatory patients are more likely to experience dizziness and hypotension than patients who are confined to bed. However, orthostatic hypotension may occur in supine patients upon rising. Therapy with opiate agonists should be administered cautiously and initiated at reduced dosages in patients with hypovolemia, or a predisposition to hypotension. When given by intramuscular or subcutaneous administration, clinicians should also be aware that impaired perfusion in these patients may prevent complete absorption of the drug. With repeated injections, an excessive amount may be absorbed suddenly if normal circulation is reestablished.
HYDROmorphone Adrenal Insufficiency
Applies to: Adrenal Insufficiency
Patients with Addison's disease may have increased risk of respiratory depression and prolonged CNS depression associated with the use of narcotic (opioid) analgesic agents. Conversely, these agents may cause or potentiate adrenal insufficiency. Therapy with opioids should be administered cautiously and initiated at reduced dosages in patients with adrenocortical insufficiency. Subsequent doses should be titrated based on individual response rather than a fixed dosing schedule.
HYDROmorphone Arrhythmias
Applies to: Arrhythmias
Opiate agonists have cholinergic activity. Large doses and/or rapid intravenous administration may produce bradycardia and arrhythmias via stimulation of medullary vagal nuclei. Therapy with opiate agonists should be administered cautiously in patients with a history of arrhythmias. Clinical monitoring of cardiovascular status is recommended during therapy.
chlorpheniramine Asthma
Applies to: Asthma
It has been suggested that the anticholinergic effect of antihistamines may reduce the volume and cause thickening of bronchial secretions, resulting in obstruction of respiratory tract. Some manufacturers and clinicians recommend that therapy with antihistamines be administered cautiously in patients with asthma or chronic obstructive pulmonary disease.
phenylephrine Benign Prostatic Hyperplasia
Applies to: Benign Prostatic Hyperplasia
Sympathomimetic agents may cause or worsen urinary difficulty in patients with prostate enlargement due to smooth muscle contraction in the bladder neck via stimulation of alpha-1 adrenergic receptors. Therapy with sympathomimetic agents should be administered cautiously in patients with hypertrophy or neoplasm of the prostate.
HYDROmorphone Biliary Obstruction
Applies to: Biliary Obstruction
Opioid agonists may cause spasm of the sphincter of Oddi, which may increase biliary tract pressure. Other opioid-induced effects may include a reduction in biliary and pancreatic secretions and transient elevations in serum amylase. Patients with biliary tract disease (including acute pancreatitis) should be regularly evaluated for worsening symptoms. Therapy with opioids should be administered cautiously in patients with biliary tract disease, gallbladder disease, or acute pancreatitis.
chlorpheniramine Cardiovascular Disease
Applies to: Cardiovascular Disease
Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.
chlorpheniramine Chronic Obstructive Pulmonary Disease
Applies to: Chronic Obstructive Pulmonary Disease
It has been suggested that the anticholinergic effect of antihistamines may reduce the volume and cause thickening of bronchial secretions, resulting in obstruction of respiratory tract. Some manufacturers and clinicians recommend that therapy with antihistamines be administered cautiously in patients with asthma or chronic obstructive pulmonary disease.
phenylephrine Diabetes Mellitus
Applies to: Diabetes Mellitus
Sympathomimetic agents may cause increases in blood glucose concentrations. These effects are usually transient and slight but may be significant with dosages higher than those normally recommended. Therapy with sympathomimetic agents should be administered cautiously in patients with diabetes mellitus. Closer monitoring of blood glucose concentrations may be appropriate.
HYDROmorphone Gallbladder Disease
Applies to: Gallbladder Disease
Opioid agonists may cause spasm of the sphincter of Oddi, which may increase biliary tract pressure. Other opioid-induced effects may include a reduction in biliary and pancreatic secretions and transient elevations in serum amylase. Patients with biliary tract disease (including acute pancreatitis) should be regularly evaluated for worsening symptoms. Therapy with opioids should be administered cautiously in patients with biliary tract disease, gallbladder disease, or acute pancreatitis.
chlorpheniramine Gastrointestinal Obstruction
Applies to: Gastrointestinal Obstruction
Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.
chlorpheniramine Glaucoma/Intraocular Hypertension
Applies to: Glaucoma / Intraocular Hypertension
Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.
phenylephrine Glaucoma/Intraocular Hypertension
Applies to: Glaucoma / Intraocular Hypertension
Sympathomimetic agents can induce transient mydriasis via stimulation of alpha-1 adrenergic receptors. In patients with anatomically narrow angles or narrow-angle glaucoma, pupillary dilation can provoke an acute attack. In patients with other forms of glaucoma, mydriasis may occasionally increase intraocular pressure. Therapy with sympathomimetic agents should be administered cautiously in patients with or predisposed to glaucoma, particularly narrow-angle glaucoma.
chlorpheniramine Hyperthyroidism
Applies to: Hyperthyroidism
Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.
chlorpheniramine Hypotension
Applies to: Hypotension
Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.
HYDROmorphone Liver Disease
Applies to: Liver Disease
Narcotic (opioid) analgesic agents are extensively metabolized by the liver, and several of them (e.g., codeine, hydrocodone, meperidine, methadone, morphine, propoxyphene) have active metabolites that are further converted to inactive substances. The serum concentrations of these agents and their metabolites may be increased and the half-lives prolonged in patients with impaired hepatic function. Therapy with opioids should be administered cautiously and initiated at reduced dosages in patients with liver disease. Subsequent doses should be titrated based on individual response rather than a fixed dosing schedule.
chlorpheniramine Liver Disease
Applies to: Liver Disease
Limited pharmacokinetic data are available for the older, first-generation antihistamines. Many appear to be primarily metabolized by the liver, and both parent drugs and metabolites are excreted in the urine. Patients with renal and/or liver disease may be at greater risk for adverse effects from antihistamines due to drug and metabolite accumulation. Therapy with antihistamines should be administered cautiously in such patients. Lower initial dosages may be appropriate.
HYDROmorphone Pancreatitis
Applies to: Pancreatitis
Opioid agonists may cause spasm of the sphincter of Oddi, which may increase biliary tract pressure. Other opioid-induced effects may include a reduction in biliary and pancreatic secretions and transient elevations in serum amylase. Patients with biliary tract disease (including acute pancreatitis) should be regularly evaluated for worsening symptoms. Therapy with opioids should be administered cautiously in patients with biliary tract disease, gallbladder disease, or acute pancreatitis.
acetaminophen Phenylketonuria
Applies to: Phenylketonuria
Several oral acetaminophen and acetaminophen-combination products, particularly flavored chewable tablets, contain the artificial sweetener, aspartame (NutraSweet). Aspartame is converted to phenylalanine in the gastrointestinal tract following ingestion. Chewable and effervescent formulations of acetaminophen products may also contain phenylalanine. The aspartame/phenylalanine content should be considered when these products are used in patients who must restrict their intake of phenylalanine (i.e. phenylketonurics).
phenylephrine Prostate Tumor
Applies to: Prostate Tumor
Sympathomimetic agents may cause or worsen urinary difficulty in patients with prostate enlargement due to smooth muscle contraction in the bladder neck via stimulation of alpha-1 adrenergic receptors. Therapy with sympathomimetic agents should be administered cautiously in patients with hypertrophy or neoplasm of the prostate.
HYDROmorphone Renal Dysfunction
Applies to: Renal Dysfunction
Although narcotic (opioid) analgesic agents are generally metabolized by the liver, renal impairment can alter the elimination of these agents and their metabolites (some of which are pharmacologically active), resulting in drug accumulation and increased risk of toxicity. Therapy with opioids should be administered cautiously and initiated at reduced dosages in patients with significantly impaired renal function. Subsequent doses should be titrated based on individual response rather than a fixed dosing schedule.
chlorpheniramine Renal Dysfunction
Applies to: Renal Dysfunction
Limited pharmacokinetic data are available for the older, first-generation antihistamines. Many appear to be primarily metabolized by the liver, and both parent drugs and metabolites are excreted in the urine. Patients with renal and/or liver disease may be at greater risk for adverse effects from antihistamines due to drug and metabolite accumulation. Therapy with antihistamines should be administered cautiously in such patients. Lower initial dosages may be appropriate.
HYDROmorphone Seizures
Applies to: Seizures
Narcotic (opioid) analgesic agents may increase the frequency of seizures in patients with seizure disorders, may increase the risk of seizures occurring in other clinical settings associated with seizures, and, at higher dosages, have been reported to induce seizures in patients without history of seizures. Patients with history of seizure disorders should be regularly evaluated for worsened seizure control during therapy. Prolonged meperidine use may increase the risk of toxicity (e.g., seizures) from the accumulation of the active metabolite (normeperidine).
HYDROmorphone Urinary Retention
Applies to: Urinary Retention
Narcotic (opioid) analgesic agents may inhibit the urinary voiding reflex and increase the tone of the vesical sphincter in the bladder. Acute urinary retention requiring catheterization may occur, particularly in patients with prostatic hypertrophy or urethral stricture and in older adult patients. These agents may also decrease urine production via direct effects on the kidney and central stimulation of the release of vasopressin. Therapy with opioids should be administered cautiously in patients with or predisposed to urinary retention and/or oliguria. The effects on smooth muscle tone appear to be the most pronounced with morphine.
chlorpheniramine Urinary Retention
Applies to: Urinary Retention
Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
| Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
| Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
| Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
| No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.